

functional Magnetic Resonance Imaging

2#5@3

Canonical Brain Areas Involved in Arithmetic Problem Solving

Maps are based on meta-analysis of 44 studies of arithmetic in neurosynth (Yarkoni et al. 2011).

Mental arithmetic task Is the equation correct? Is the equation correct? (experimental) (experimental) Is there a Is there a "5"? "5"? (control) (control) rest rest 30s 30s 30s 30s 30s 3+2-1=5 6@2#1*2 Arabic III + II – I = V VI # II @I & II Roman Wu, Chang et al. (2009), Cerebral Cortex

Cytoarchitectonic Probablistic Maps

Wu Chang et al. (2009), Cerebral Cortex

Wu, Chang et al. (2009), Cerebral Cortex

Activation Difference Between Arabic and Roman Numerals

Wu, Chang et al. (2009), Cerebral Cortex

AG activation Correlates with Accuracy

Are the neural correlates of mental arithmetic modulated by mathematical competence?

Another example

- Screened a large sample of adults (138)
- Selected individuals who did not differ in IQ but varied in their mathematical competence
- fMRI study
 - Multiplication verification **4 x 6 = 24**
 - Control Task **3 = 3 = 3**

Which brain regions activated during multiplication correlated with mathematical competence?

Taiwan Mind & Brain Inaging Center

Grabner, Ansari et al. (2007)

Brain activation predicts high school math

- Participants
 - 33 high school students (mean age :17 yrs)
- Math skill assessment

5 + 3 = ?

2874 + 3527 = ?

Arithmetic strategy

- Retrieval
 - Directly recollect answer in one step
- Procedural calculation
 - Calculate answer using explicit algorithm

Strategy Variability Evidence from Brain Imaging (a) Retrieval > Procedural (b) Procedural > Retrieval Grabner, Ansari et al. (2009)

1. [(right number – left number) + 1] + right number 2. [(right number + left number) - 10] + right number

Delazer et al. (2005)

Training effect: trained vs. untrained untrained vs. trained

ain enter

Strategy effect: drill vs. algorithm algorithm vs. drill

Does the brain activate differently across basic arithmetic operations?

	Functional Dissociation Between Basic Arithmetic Operations	
 Participants 20 healthy adults (age 18-30) Tasks 		
	Experimental Condition: Addition $5 + 4 = 8$ "is this correct?" Subtraction $8 - 4 = 5$ Multiplication $3 \times 2 = 6$	
	Tetren Mad a Brein Insejing Conter	11)

How does the neural network of mathematical information processing develop with learning and experience?

<u>کې چې چې</u>

Development of mental arithmetic

Rivera et al. (2005)

PPC Regions Showing Linear Developmental Changes

What about atypical developing?

Developmental Dyscalculia (DD)

- DD is a specific learning disability affecting the acquisition of school-level mathematical abilities in the context of otherwise normal academic achievement, with prevalence rate of 3-6% (Price et al., 2007).
- DD children show persistent deficits in mathematical skill.
 - longitudinal study of 140 11-yr old children with DD (Shalev et al., 2005)
 - After 3 years, 95% of the group still meet DD criteria
 - After 6 years,
 - 51% could not solvle 7 X 8 (vs. 17% of controls)
 71% could not solve 37 X 24 (vs. 27%)

49% could not solve 45 X 3 (vs. 15%) 63% could not solve 5/9 + 2/9 (vs. 17%)

Children with low math skill

- fMRI study of complex and simple addition and subtraction problem
- 10-12 year old children

DeSmedt et al. (2011)

Neural Representation in Typical Developing (TD) and Developmental Dyscalculia (DD) Children

- Participants
 - Full scale IQ > 80
 WIAT-II, NumOps
 - 21 TD, percentile > 25th
 16 DD, percentile <=25th
- Hypothesis
 - DD show weak distinct representation between problem types.

Chang, luculano, & Menon (in preparation)

Summary

- PPC is consistently implicated in mental arithmetics.
 - PPC has distinct function in mathematical cognition.
 - PPC is modulated by mathematical competence and strategy use.
- Development profile of PPC
 - $-\,$ developmental shift from PFC to PPC in mathematical cognition
 - Heterogeneous developmental trajectory of PPC
 - Neural representations of PPC converge between distinct problem types.
- Children with developmental dyscalculia
 - Show persistent deficit in mathematical skill
 - fail to generate distinct representation between different problem types.

Acknowledgement

Prof. Vinod Menon Stanford Cognitive & System Neuroscience Lab

