腦中的數學－從fMRI研究談數學認知發展

張葶营
國立政治大學心理系國立政治大學心腦學中心

What is mathematical skill？

－Basic Number Processing
－Number Representation
－Magnitude Judgments
－Symbols vs．Numbers
012 忽
－Mathematical Computation 8578：
－Arithmetic
－Calculation

$$
\begin{gathered}
3+6=9 \\
17-9=8
\end{gathered}
$$

vocu
4 \qquad

Overview

－How is mental arithmetic stored and processed in the brain？
－How does the neural network of mental arithmetic processing develop with learning and experience？
－How does atypical developing arithmetic skills represented in the brain？

functional Magnetic Resonance Imaging

Canonical Brain Areas Involved in Arithmetic Problem Solving

Maps are based on meta-analysis of 44 studies of arithmetic in neurosynth (Yarkoni et al. 2011).

(4)

Wu, Chang et al. (2009), Cerebral Cortex

Wu, Chang et al. (2009), Cerebral Cortex

Distinct PPC profile

vocu
4.
Taiman
Mind 8 Brain
Imaging Center
Wu, Chang et al. (2009), Cerebral Cortex

Activation Difference Between Arabic and Roman Numerals

Are the neural correlates of mental arithmetic modulated by mathematical competence?

AG activation Correlates with Accuracy

Yacu

Wu, Chang et al. (2009), Cerebral Cortex

Another example

- Screened a large sample of adults (138)
- Selected individuals who did not differ in IQ but varied in their mathematical competence
- fMRI study
- Multiplication verification $4 \times 6=24$
- Control Task $3=3=3$

Which brain regions activated during multiplication correlated with mathematical competence?
NCOUU
Y

Grabner, Ansari et al. (2007)

Brain activation predicts high school math

- Participants
- 33 high school students (mean age :17 yrs)
- Math skill assessment
- PSAT

A

VaCu
Timin $\underset{ }{\text { Minasing Center }}{ }^{4}$

Price et al. (2013)

Are the neural correlates of mental arithmetic modulated by strategy choice?

Price et al. (2013)
(4) $==0$

$$
5+3=?
$$

$14+25=$?
(4) $=$
$45+78=$?
$2874+3527=$?
vocu
4 \qquad

Arithmetic strategy

- Retrieval
- Directly recollect answer in one step
- Procedural calculation
- Calculate answer using explicit algorithm

Learning by algorithm or learning by drill?

Procedure:

1. [(right number - left number) +1] + right number 2. [(right number + left number) - 10] + right number

Delazer et al. (2005)

Strategy Variability Evidence from Brain Imaging

(b) Procedural > Retrieval

(1) Timanin Brate

Grabner, Ansari et al. (2009)

Training effect:

trained vs. untrained untrained vs. trained

Strategy effect:
drill vs. algorithm algorithm vs. drill

Does the brain activate differently across basic arithmetic operations?

Problem solving strategies varies across arithmetic problems

How does the neural network of mathematical information processing develop with learning and experience?

Functional Dissociation Between Basic Arithmetic Operations

- Participants

- 20 healthy adults (age 18-30)
- Tasks

vacu \qquad Rosenberg-Lee, Chang et al. (2011)

How specific do we learn?
trained vs. untrained
untrained vs. trained

Development of mental arithmetic

Rivera et al. (2005)

Developmental Change of Mental Arithmetics

Does all PPC subdivisions follow a heterogeneous or homogeneous linear developmental trajectory? Is there nonlinear developmental change in the PPC?

Development of mental arithmetic across adolescence

- Participants	$13-5=9$	5 @ 1 \$ 4
-25 children (age 7-10)	$12-3=7$	$4 \% 1$ \# 3
-19 adolescents (age 13-17)	$9-5=4$	$6 \& 1$ @ 7
- 26 adults (age 19-22)	$9-5$	

Y) Mins anacine

Chang et al. (under revision)

Nonlinear development of SMG connectivity

vocu

4 | Taiwan |
| :---: |
| Minan A Brain |
| linasing Center |

PPC Regions Showing Transient Engagement in Adolescents

VOCU

Taiman
Mind
Arat 4

How about the development of different basic arithmetic operation?

Experimental Design

- Cross-sectional fMRI
- 28 Children (7-9 yrs)
- 28 Adults (18-22 yrs)
- Block design

vacu Taimen Chang, Rosenberg-Lee, Metcalfe, Chen, \& Menon (under revision) 4 Thimen in back in

Arithmetic problem solving strategies converge across addition and subtraction

Campbell \& Xue, 2001;Barrouillet, Mignon, \& Thevenot, 2008

MRS in hIP2 correlates with task performance in children but not in adults

Chang et al. (under revision)

Developmental Dyscalculia (DD)

- DD is a specific learning disability affecting the acquisition of school-level mathematical abilities in the context of otherwise normal academic achievement, with prevalence rate of 3-6\% (Price et al., 2007).
- DD children show persistent deficits in mathematical skill.
- longitudinal study of 140 11-yr old children with DD (Shalev et al., 2005)
- After 3 years, 95% of the group still meet DD criteria
- After 6 years,
- 51% could not solve 7×8 (vs. 17\% of controls)
- 71% could not solve 37×24 (vs. 27\%)

VCOCU 49% could not solve 45×3 (vs. 15\%)
$4-63 \%$ could not solve $5 / 9+2 / 9$ (vs. 17%)
Y- 63\% could not solve

What about atypical developing?

Atypical developing ?

Children with low math skill

- fMRI study of complex and simple addition and subtraction problem
- 10-12 year old children

DeSmedt et al. (2011)

DD failed to show brain regions modulated by task complexity

NCOUU
Ashkenazi et al. (2012)

Neural Representation in Typical Developing (TD) and Developmental Dyscalculia (DD) Children

- Participants
- Full scale IQ > 80
- WIAT-II, NumOps
- 21 TD, percentile $>25^{\text {th }}$
- 16 DD, percentile $<=25^{\text {th }}$
- Hypothesis
- DD show weak distinct representation between problem types.

VCOUU
1.

Chang, luculano, \& Menon (in preparation)

MRS Maps for Arithmetic Problems of TD and DD children

Acknowledgement

Prof. Vinod Menon
Stanford Cognitive \& System Neuroscience Lab

VCOU
4) $=$

Summary

- PPC is consistently implicated in mental arithmetics.
- PPC has distinct function in mathematical cognition.
- PPC is modulated by mathematical competence and strategy use.
- Development profile of PPC
- developmental shift from PFC to PPC in mathematical cognition
- Heterogeneous developmental trajectory of PPC
- Neural representations of PPC converge between distinct problem types.
- Children with developmental dyscalculia
- Show persistent deficit in mathematical skill
- fail to generate distinct representation between different problem types.

VCOU
(1) Taiman

