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Basic theory

Synchronization:
A universal mechanism for adjustment

of rhythms of nonlinear systems



An introductory remark

The notion of synchrony/synchronization:
understood differently in different branches of science

This presentation: a physicist’s viewpoint

Classical physics: no quantum and relativistic effects

Subject of intensive research:
Physical Review E, October 2016: two times 1n the title,
four times 1n the abstract

Most likely: the oldest scientifically described nonlinear
effect!



Synchronization: what is it about?

1 | It is about oscillatory objects
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Synchronization: what is it about?

1 | It is about oscillatory objects

2 | Its about their weak interaction
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Synchronization: what it is?

1 | It is about oscillatory objects

2 | Its about their weak interaction

Synchronization is adjustment of

rhythms of active (self-sustained)

oscillatory objects due to their
weak Interaction




Self-sustained oscillators

Active oscillators

Biology: systems generating endogenous rhythms

Systems of this class:

1 | generate stationary oscillations without periodic forces

2 | are dissipative nonlinear systems

3 | are described by autonomous differential
equations

4 | are represented by a limit cycle
in the phase space

Synchronization is possible for self-sustained

oscillators only!



Self-sustained oscillators: example I
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Paradigmatic model: van der Pol equation

Amplifier

i = i(u)

Kirchhoff law + approximation (u) = gou — g1u”

¥ —p(l —z?)x + W’z =0
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Limit cycle

Consider general N-dimensional (N > 2) self-sustained oscillator

X =G(X) yx = (T1,T2y...,TN)
Suppose 1t has a stable periodic solution

X()(t) — X()(t -+ T), T = 271'/(.0

In the phase space (the space
of all variables x ) this solution
1s represented by an isolated

closed attractive curve, called

limit cycle
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Self-sustained oscillators: example 11

E threshold level

K
-
X
~
&
accumulation §
E threshold level N
) <
— 1;-_ IS
= <
~
''''''''' D
S
=
"firing"

Integrate-and-fire system

.
o — time
T
: : |
. T .

13



Self-sustained oscillators: example 11

water outflow
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Integrate-and-fire system

1s simple but widely used model of neuron firing

A L

} | 10 sec

14



Discovery of synchronization
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Christiaan Huygens, 1656
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Christiaan Huygens: mutual sympathy of clocks
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Christiaan Huygens: mutual sympathy of clock 11

-CHRIS TIAAN-
*HUYGENS:

Christiaan Huygens, Horologium Oscillatorium, 1656

It 1s quite worths noting that when we
suspended two clocks so constructed from two
hooks 1mbedded 1n the same wooden beam, the
motions of each pendulum 1n opposite swings
were so much 1n agreement that they never
receded the least bit from each other and the
sound of each was always heard simultaneous-
ly. Further, 1f this agreement was disturbed by
some 1nterference, 1t reestablished itself in a
short time. For a long time I was amazed at this
unexpected result, but after a careful
examination finally found that the cause of this
1s due to the motion of the beam, even though
this 1s hardly perceptible.
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Demonstration of synchronization I
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Demonstration of synchronization 11
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Many metronomes on a moveable support
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Firetlies synchrony

ITINERARIA ASIATICA

Engelbert Kaempfer
(16.09.1651, Lemgo, Germany - 2.11.1716)

A Destripvion of M

DOM OF SIAM

v

A description of the
Kingdom of Siam, 1690

Fireflies “hide their Lights all at
once, and a moment after make it
appear again Wwith the utmost
regularity and exactness.”
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iretlies synchrony 11

Cyrbemeticx

Norbert Wiener

Cybernetics: or the Control and
Communication in the Animal
and the Machine, 1961

Hypothesis: same “phenomenon of
the pulling together of frequencies”
1s responsible for emergence of the
brain waves
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Electronic “Fireflies”

WWW.INSTRUCTABLES.COM/ID/SYNCHRONIZING-FIREFLIES/
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“Bikeflies”
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“Bikeflies”

1,000
FI refl IeS 1050 W Wilson, Chicago. IL 60640

Buy your synchronizing bike light here and participate! For the

September 27 Chicago premiere of[The Kuramoto Model (1,000
Fireflies), 250 custom bike lights will be distributed to cyclists
attending the EdgeUp festival, part of Chicago Artists Month. Using
radio communication, these devices synchronize their blinking
patterns with other nearby devices, altering social rules of proximity
and generating a nomadic self-organizing system.

HTTPS://SQUAREUP.COM/MARKET/1-O00-FIREFLIES



https://squareup.com/market/1-000-fireflies

Pedestrian synchrony on footbridges

Millennium Bridge, London, river Thames

P-HOTO © PETER VISONTAY
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Millennium Bridge, opening day
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Synchronization vs. resonance
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Film: Arup Group Limited
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Synchronization vs. resonance 11

Resonance: The force originally exists, the system (the bridge)
responds to 1t
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Synchronization vs. resonance 111

Synchronization: Originally there is no force, but it emerges due to
self-organization

30



Synchronized applause

NATURE | VOL 403 | 24 FEBRUARY 2000 | www.nature.com

Z.Néda*, E. Ravasz*, Y. Brechett,T. Vicseki, A.-L. Barabasi

brief communications

The sound of many hands clapping

Tumultuous applause can transform itself iInto waves of synchronized clapping.

n audience expresses appreciation for

a good performance by the strength

and nature of its applause. The thun-
der of applause at the start often turns quite
suddenly into synchronized clapping, and
this synchronization can disappear and
reappear several times during the applause.
The phenomenon is a delightful expression
of social self-organization that provides an
example on a human scale of the synchro-
nization processes that occur in numerous
natural systems, ranging from flashing
Asian fireflies to oscillating chemical reac-
tions' .

. in the
smaller and culturally more homogeneous
eastern European communities, synchro-
nized clapping is a daily event, whereas it
happens only sporadically in western Euro-
pean and North American audiences.
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Synchronization: main problems

1 | Externally forced oscillator
2 | Two mutually coupled oscillators

3 | Several coupled oscillators

4 | Large population of oscillators

S | Chaotic systems
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Entrainment by an external force: circadian rhythms

Jean-Jacques d'Ortous de Mairan, 1729

Inner clock is locked to the light-dark cycle

Loss of synchrony

Motion of leaves of a plant in the darkness:

evidence for the existence of the inner clock

(circadian rhythm)

hours
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Constant
conditions
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Self-sustained oscillators: example 11

E threshold level
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Entrainment by an external force: neon tube oscillator

Van der Pol, |
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Entrainment by an external force: neon tube oscillator
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Entrainment by an external force: neon tube oscillator
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Entrainment by an external force: neon tube oscillator

T/Text A

15 | locking regions of order m:1
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Entrainment by an external force: n:m locking
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Two mutually coupled oscillators: classical experiment by
Appleton, 1922

I

36 40 44 48 52 56 60
Condenser readings

oscilloscope

Beat frequency

Condition of locking is fulfilled for
a finite range of {frequencies mismatch!
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Synchronization: intermediate summary

Asynchronous state: different frequencies

Synchronous state: equal frequencies
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Synchronization: intermediate summary

Synchronous state: equal frequencies

in-phase synchrony

- it itr hase shift
-phase synchrony
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Synchronization: intermediate summary

Synchronous state: equal frequencies

min—pha% synchrony
with arbitrary phase shift

. . . . ntlphase synchrony
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Synchronization: intermediate summary

Synchronous state: equal frequencies

1n phase synchrony

\ / \ / 1th bitrary phase shift

anti-phase synchrony
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Frequency locking: intermediate summary

w: forcing frequency
e forcing amplitude

wo: frequency of the

2:1

autonomous system

(): frequency of the

Q2
forced system {m

2_

frequency locking: b

0,2  w, 3w /2 20, 3y,

n ) = mw

02w, 30,/2 2

Same picture for mutual coupling of two systems
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Chaotic oscillators

Waterwheel

I

manifold
(perforated hose)

water pumped
into manifold —

(side view)

chamber

walter

column M screw (o

| adjust tilt

S. Strogatz, Nonlinear dynamics and chaos

Can chaotic systems synchronize? Yes!
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Synchrony vs. simultaneity
Generally, synchrony does not imply simultaneity

Recall synchronization with a phase shift:

However, for some systems, e.g. for neurons, synchronization
means simultaneous occurrence of events

a7



Synchronization of integrate-and-fire systems

Recall the toy model

% threshold level E threshol7vel

accumulation "firing"



Forced integrate-and-fire systems

o [..... == . .
O
Here “synchronous™ "
- 3
means ‘“‘simultaneous’! 3
e
. .
(c) = time
Q T
—_
: =
et _ .
time

49



Example: cells of the sino-atrial node

mV .
+20 - leading pacemaker
0
90 - threshold
i / potential
| Bl
1 time (s)

latent pacemaker B reTeot

threshold Dudel and Trautwein, 1938,
»~ potential Schmidt and Thews, 1983
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Geometrical image of the periodic self-sustained
oscillation: limit cycle

State of the clock 1s determined by the
angle and velocity of the pendulum
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Limit cycle

Consider general N-dimensional (N > 2) self-sustained oscillator

X =G(X) yx = (T1,T2y...,TN)
Suppose 1t has a stable periodic solution

X()(t) — X()(t -+ T), T = 271'/(.0

In the phase space (the space
of all variables x ) this solution
1s represented by an isolated

closed attractive curve, called

limit cycle
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Solvable model
Normal form equation for the Andronov-Hopt bifurcation

Stuart-Landau oscillator, Poincaré oscillator, Bautin oscillator,
complex amplitude equation, ...

2= (1+iw)z — (1 +ia)|z|*
Polar coordinates: z = Re*?

R = R(1 — R?)

Y = w — aR?

Limitcycle: R=1,¢p=w — «

Nonlinear, but solvable model!
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Forced complex amplitude equation
t=1+1iw)z— 1 +1ia)|z|?’z4+ece™, a=0,ekK1

In polar coordinates:

R = R(1 — R?) + e cos(vt — )

° € °
P = w - Rsm(ut—<,0)

Approximate solution for a small deviation from the limit cycle:

R=1+496 0 ~ —26 + e cos(vt — )
0 ~ gcos(l/t — )

3
R=1—|—§cos(ut—cp)

@Y = w + esin(vt — )
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Forced complex amplitude equation 11

3
R:1—|—§cos(l/t—cp)

@ = w + esin(vt — )
Amplitude dynamics: negligible variation of the amplitude
Phase dynamics: large deviation of the phase

Phase difference ¢ = ¢ — vt e
1,b —Ww—V —€esiny
lw —v| < e = 1 = const

Synchronization! nd
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Phase is neutrally stable, amplitude is stable!
Consider two solutions on the limit cycle:
d d A d(A
dp _ 4 Hetde) o dAp)
dt dt dt

0

Perturbation of the phase neither grows nor decays

Perturbation of the amplitude decays

Phase corresponds to the zero Lyapunov exponent

Amplitude corresponds to the negative Lyapunov exponent
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Mathematical description of two coupled oscillators

Recall the general property of self-sustained oscillators:

1. amplitudes are stable
2. phases are free (neutrally stable)

Hence, for weak coupling, we consider the amplitudes as fixed
and trace only the variation of phases

Indeed, exactly variation of phases determines adjustment of
frequencies!

Uncoupled systems: qbl = W1 , 652 = W2
Stmplest model of phase dynamics of coupled systems:

1 = w1 + €1 sin(p2 — P1)

P2 = wa + ez sin(P; — ¢2)
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Mathematical description of two coupled oscillators 11

b1 = w1y + &1 sin(¢2 — ¢1)
652 — W2 T €2 Sin(¢1 — sz)
Phase difference: ¥ = 1 — o

Y = w1 — w2 — (61 + €2) siny

= sinY =
€1+ €2
Synchronous solution exists if |w1 — w2| < &1 + &2

FI’GqUGIICy locking Ql,2 — $1,2 ﬂl — ﬂz
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Two coupled oscillators: general case

b1 = w1 + €1 sin(meos — ney)
P2 = wz + €3 sin(ng; — mes)
Phase difference: Y = ngy — me2
Q,L = nwi; — Mmwsg — (ne; + mes) sin Y

Synchronous solution: ¢ =0 = | neY; — maoe = const

NnNwi1 — Mw9

= sinY =
neq —I— meo

Synchronous solution exists if |nwi; — mwsz| < ne; + me;

Frequency locking €, 5 = @1,2 n{l; = mls
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