2021 fMRI Training: fMRI Experimental Design

27th January, 2021 @ NTU Bo-Cheng Kuo Department of Psychology National Taiwan University <u>bckuo@ntu.edu.tw</u>

- 1. A basic plan for an fMRI study
 - (1) Research question (novelty? Importance?)
 - How information processing is implemented in the brain?
 - Technology: Why (f)MRI?
 - (2) Hypothesis (define mental process to examine)
 - Neural hypothesis: brain regions and neuronal responses
 - Hemodynamic hypothesis: , BOLD signals and linearity
 - Psychological hypothesis: how a given manipulation (independent variables) should change measurements (dependent variables)
 - (A) (induce) psychological state(s)
 - (B) Detect brain signals related to the psychological states
 - Statistical hypothesis: multiple comparisons
 - (3) Experiment (design task to manipulate that process):
 - Task-positive and task-negative
 - Independent variables and dependent variables
 - Between-subject or within-subject (or repeated measure)
 - Tasks
 - (A) Conditions (independent variables)
 - (B) Sessions and runs
 - (C) Blocks and trials
 - (D) Events, stimuli and responses
 - Designs: block and event-related.
 - (A) Block design: similar events are grouped
 - (B) Event-related design: events are mixed (or jittered).
 - (4) Data acquisition (measure BOLD signals and behavioural data)
 - Operating status of the system and set-up
 - Preparation of the participant (safety)
 - Localization
 - Structural T1 scan
 - Functional EPI scans (multiple runs)
 - Head movements
 - Behavioral responses

- (5) Analyses, statistics and inferences
- 2. Design considerations
 - (1) Inefficient experimental designs?
 - Poorly matched to the research hypothesis
 - Unclear manipulation
 - Correlation in order
 - Correlation in time
 - (2) What should we control?
 - Individual difference: matching and random assignment
 - Timing (or intervals): randomization
 - Event or trial orders: randomization or counterbalance
 - Instructions and response bias (participants' strategies)
 - Combined techniques: fMRI + MEG, fMRI+EEG
 - (3) How to optimise our fMRI design
 - Specific hypothesis
 - To maximize the size of effect: scans, participants, idea interval
- 3. Other considerations
 - (1) Participants: metal-free, large numbers (as many as possible), sleepy, training.
 - (2) Experimental time: about 50-60 minutes.
 - (3) Multiple runs with many short breaks.
 - (4) Always look at head movement and behavioural responses throughout the experiment.
- 4. Six basic rules for fMRI experimental design (Huettel, Song, McCarthy, 2004, Functional Magnetic Resonance Imaging)
 - (1) Evoke the cognitive processes of interest
 - (2) Collect as much data as possible from each subject
 - (3) Collect data from as many subjects as possible
 - (4) Choose your stimulus conditions and the timing of their presentation to evoke maximal changes in the cognitive processes of interest, over time
 - (5) Organise the timing of experimental stimuli so that successively elicited processes of interest are minimally correlated with each other, over time
 - (6) Where possible, obtain measurements of your subjects' behaviour that can be related to the fMRI activation