Fieldtrip - overview

Pros:

- 1. Flexible in data processing
- 2. Advanced analysis features
- 3. Supporting both animal and human data

Cons:

- 1. A matlab toolbox.
- 2. No graphic user interface (some experience in script writing)
- 3. Poor plotting features

Pipeline

Preprocessing – quality check

SQUID jumps

Preprocessing - importing data and defining trials

Preprocessing - importing data and defining trials

Preprocessing – artifact

Preprocessing – artifact

Event-related field – example dataset

Event-related field

Cluster-based permutation test

2nd-level inferential statistics: testing whether the effect is consistent over subjects

NHST

- 1. Begin with a research hypothesis.
- 2. Set up a null hypothesis.
- 3. Construct the sampling distribution of the particular statistic on the assumption that H0 is true.
- 4. Collect some data.
- 5. Compare the sample statistic to that distribution.
- Reject or retain H0, depending on the probability, under H0, of a sample statistic as extreme as the one we have obtained.

Permutation test

	Null hypothesis													
	2		3		4		5		6		7		8	
В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
5	8	5	8	5	8	5	5	8	5	8	5	8	5	8
4	4	6	6	4	4	6	6	4	4	6	6	4	4	6
	0.46		1.11		0.0		0.0		-1.11		-0.46		-3.46	
	B 5 3 4	5 8 3 4 4 4	5 8 5 3 4 3 4 4 6	5 8 5 8 3 4 3 3 4 4 6 6	5 8 5 8 5 3 4 3 3 4 4 4 6 6 4	5 8 5 8 5 8 3 4 3 3 4 3 4 4 6 6 4 4	5 8 5 8 5 8 5 3 4 3 3 4 3 4 4 4 6 6 4 4 6	5 8 5 8 5 8 5 5 3 4 3 3 4 3 4 4 4 4 6 6 4 4 6 6	5 8 5 8 5 8 5 8 3 4 3 3 4 3 4 4 3 4 4 6 6 4 4 6 6 4	B A B A B A B A B A B A B A B A B A B A	B A B A B A B A B A B S S S S S S S S S	B A B A B A B A B A B A B A B A B A B A	B A B A B A B A B A B A B A B S S S S S	B A B A B A B A B A B A B A B A B A B A

Data (1,1:2)	1		2		3		4		5		6		7		8	
(1,1.2)	A	В	A	В	A	В	A	В	A	В	A	В	A	В	Α	В
	8, 6	5, 2	8, 6	5, 2	8, 6	5, 2	8, 6	5, 2	5, 2	8, 6	5, 2	8, 6	5, 2	8, 6	5, 2	8, 6
	4. 3	3, 1	4, 3	3, 1	3, 1	4, 3	3, 1	4, 3	4, 3	3, 1	4, 3	3, 1	3, 1	4, 3	3, 1	4, 3
	6, 7	4, 4	4, 4	6, 7	6, 7	4, 4	4, 4	6, 7	6, 7	4, 4	4, 4	6, 7	6, 7	4, 4	4, 4	6, 7
t values	(3.46; 5.20)		(0.46; 0.48)		(1.11; 0.90)		(0.0; -0.15)		(0.0; 0.15)		(-1.11; -0.90)		(-0.46; -0.48)		(-3.46; -5.20)	
tsum	8.66		0.94		2.01		-0.15		0.15		-2.01		-0.94		-8.66	
t sum	8.66		0.94		2.01		0.15		0.15		2.01		0.94		8.66	
tmax	5.20 0.48		48	1.11		-0.15		0.15		-1.11		-0.48		-5.20		

Multiple comparison problems

The more comparisons we conduct, the more Type I errors we will make when the Null Hypothesis is true.

* Must consider Familywise (vs. per-comparison) Error Rate

Cluster-based test

- For every sample (a (channel,time)-pair or a (channel,frequency,time)-triplet) the experimental conditions are compared by means of a t-value or some other number that quantifies the effect at this sample.
- 2. All samples are selected whose t-value is larger than some threshold as specified in cfg.clusteralpha. If cfg.clusteralpha is equal to 0.05, the t-values are thresholded at the 95-th quantile for a one-sided t-test, and at the 2.5-th and the 97.5-th quantiles for a two-sided t-test (cfg.clustertail = 0).
- 3. Selected samples are clustered in connected sets on the basis of temporal, spatial and spectral adjacency (cfg.minnbchan = 2).
- 4. Cluster-level statistics are calculated by taking the sum of the t-values within every cluster.
- 5. The maximum of the cluster-level statistics is taken (cfg.clusterstatistic = 'maxsum').

Cluster-based permutation test

- 1. Collect the trials of the different experimental conditions in a single set.
- Randomly draw as many subjects from this combined data set as there were subjects in condition 1 and place them into subset 1. The remaining subjects are placed in subset 2.
- 3. Calculate the test statistic (i.e., the maximum of the cluster-level summed t-values) on this random partition.
- 4. Repeat steps 2 and 3 a large number of times and construct a histogram of the test statistics. The computation of this Monte Carlo approximation involves a user-specified number of random draws (specified in cfg.numrandomization).
- 5. From the test statistic that was actually observed and the histogram in step 4, calculate the proportion of random partitions that resulted in a larger test statistic than the observed one. This proportion is the Monte Carlo significance probability, which is also called a p-value.

Design matrix


```
cfg.design = [ ones(1,5) ones(1,5)*2; 1:5 1:5];
cfg.ivar = 1;
cfg.uvar = 2;
```


Event-related field – example dataset

Pipeline

Time frequency analysis – power

Frequency and power

Band	Frequen cy (Hz)
Delta	<4
Theta	4-7
Alpha	8-12
Beta	13-30
Gamm a	>30

Power

$$z=x+iy=|z|(\cos arphi+i\sin arphi)=re^{iarphi}$$

x = Re z, the real part y = Im z, the imaginary part $r = |z| = \sqrt{x^2 + y^2}$, the magnitude of z $\phi = arg z = atan2(y, x)$

Evoked vs Induced activity

Wavelet

Frequency resolution at frequency f: $\sigma_f = \frac{J}{m}$

Temporal resolution at frequency f: $\sigma_t = rac{m}{2*\pi*\sigma}$

Power - baseline normalization

Power - baseline normalization

Additive model

$$ERSP_z(f,t) = \left(\frac{ERS(f,t) - \mu_B(f)}{\sigma_B(f)}\right)$$

Gain model

$$ERSP_{\%}(f,t) = \frac{ERS(f,t)}{\mu_B(f)}$$

$$ERSP_{log}(f, t) = 10log_{10} (ERSP_{\%}(f, t))$$

Others

Further reading

- General: Gross et al. (2013) Good practice for conducting and reporting MEG research, Neuroimage.
- ERF analysis: Steven J Luck, An Introduction to the Event-Related Potential Technique
- TF analysis: Mike X. Cohen, Analyzing Neural Time Series Data: Theory and Practice.