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Abstract

Learning non-native phonetic categories in adulthood is an exceptionally challenging task, 

characterized by large inter-individual differences in learning speed and outcomes. The 

neurobiological mechanisms underlying the inter-individual differences in the learning efficacy are 

not fully understood. Here we examined the extent to which training-induced neural 

representations of non-native Mandarin tone categories in English listeners (n = 53) are 

increasingly similar to those of the native listeners (n = 33) who acquired these categories early in 

infancy. We particularly assessed whether the neural similarities in representational structure 

between non-native learners and native listeners are robust neuromarkers of inter-individual 

differences in learning success. Using inter-subject neural representational similarity (IS-NRS) 

analysis and predictive modeling on two functional magnetic resonance imaging (fMRI) datasets, 

we examined the neural representational mechanisms underlying speech category learning success. 

Learners’ neural representations that were significantly similar to the native listeners emerged in 

brain regions mediating speech perception following training; the extent of the emerging neural 

similarities with native listeners significantly predicted the learning speed and outcome in learners. 

The predictive power of IS-NRS outperformed models with other neural representational 

measures. Furthermore, neural representations underlying successful learning are 

multidimensional but cost-efficient in nature. The degree of the emergent native-similar neural 
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representations was closely related to the robust neural sensitivity to feedback in the frontostriatal 

network. These findings provide important insights on experience-dependent representational 

neuroplasticity underlying successful speech learning in adulthood and could be leveraged in 

designing individualized feedback-based training paradigms that maximize learning efficiency.
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Introduction

During infancy, dramatic changes occur in the brain networks that support speech processing 

(Kuhl, 2004, 2010). Language-general perception narrows to become more selective to the 

statistical regularities of the native environment (Cheour et al., 1998; Garcia-Lazaro et al., 

2011; Kuhl, 2004) promoting greater sensitivity to native speech sound categories (Kuhl, 

2010; Nakahara et al., 2004; Vallabha et al., 2007). However, experience-dependent 

perceptual narrowing can also alter low-level perception and interfere in the acquisition of 

non-native speech categories in adulthood (Kuhl et al., 2008; Myers, 2014). Non-native 

speech categories can be acquired to native-like proficiency in adulthood when learners are 

provided some amount of feedback and with sufficient intensity of training (Lively et al., 

1993; Reetzke et al., 2018). However, even in adults with similar language backgrounds, 

cognitive, socio-economic, motivation, and hearing status undergoing identical training 

paradigms, large inter-individual differences define speech learning performance (Ellis, 

2004). Indeed, individual differences are ubiquitous in the acquisition of most sub-

components of language (Kidd & Donnelly, 2020; Kidd et al., 2018). This is especially the 

case when adults with no tonal language experience learn to categorize acoustically-similar 

but lexical-relevant tone patterns (Chandrasekaran et al., 2010; Wong & Perrachione, 2007). 

Our goal here is to elucidate the neural mechanisms that underlie the extensive inter-

individual variability in the non-native tone-category learning success. We examine the 

following questions: first, are the emerging neural representations of linguistic-tone 

categories in the successful adult learners fundamentally similar or dissimilar to the neural 

representations that are acquired in early infancy? That is, is the similarity in the neural 

representations between adult learners and native listeners a robust neural neuromarkers of 

learning success? Second, is the feedback sensitivity in the corticostriatal systems a key 

indicator of individual differences in learning success and the degree of the putative 

‘nativeness’ of neural representations?

These questions relate to theoretical positions adopted in the domain of second language 

(L2) acquisition to explain individual variability in attainments. Much of the focus in this 

literature is on the learning of grammatical structures; however, this literature provides a 

theoretical scaffolding for learning non-native phonology. The shallow structure hypothesis 

posits that the representations underlying L2 acquisition have less detail relative to those 

underlying native language (L1) acquisition (Clahsen et al. 2006a, 2006b, 2018; also see 

Ullman, 2006). The fundamental difference hypothesis posits a lack of convergence between 
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non-native and native language representations and proposes that L2 learning necessitates 

relying on domain-general learning mechanisms, such as executive control functions and 

feedback processes (Bley-Vroman, 1990, 2009). These theoretical perspectives not only 

explain the differences between L1 and L2 acquisition and representation but also implicate 

the comparison between the representations of non-native learners’ L2 and native speakers’ 

L1 could potentially reflect the nativeness in L2 processing and attainment for the learners 

(Birdsong, 2018; Hartshorne et al., 2018). For example, using fMRI with traditional 

univariate activation-based analysis approaches, quantitative differences and similarities in 

brain activations have been found between L1 and L2 processes where the degree of 

similarity is dependent on the level of L2 proficiency and age of acquisition (Abutalebi, 

2008; Chee et al., 1999; Feng et al., 2015; Perani & Abutalebi, 2005; Perani et al., 1996). 

Moving beyond the activation-based group-level comparisons between L1 and L2, here we 

focus on examining the multivariate representation-based neural mechanisms underlying the 

inter-individual variability in the acquisition of a new phonological structure not present in 

English—lexical tones.

In tone languages, pitch information plays a similar role as voice onset time and duration in 

altering word meaning (Yip, 2012). For native speakers of tone languages, extracting pitch 

patterns from the incoming auditory stream and mapping key pitch features to tone 

categories are critical for speech communication. In contrast, non-native listeners who do 

not have tonal language experience have great difficulty in discriminating tonal contrasts 

with similar pitch patterns (Reid et al., 2015; So & Best, 2010). This discrimination 

difficulty may be mainly due to the fact that tonal information is not linguistically relevant to 

non-native listeners’ phonological systems (Best, 1995; Reid et al., 2015). The challenges in 

discrimination and learning have also been viewed from the perspective of feature-weighting 

(Chandrasekaran, Gandour, et al., 2007; Chandrasekaran et al., 2010). For contour-tone 

languages like Mandarin, at least two pitch-related dimensions define tone categories: pitch 

height and slope; both native and non-native listeners weight pitch height significantly 

during categorization. In contrast, the weighting of pitch slope or the combination of pitch 

height and direction (i.e., contour: time-varying height) is strongly modulated by language 

experience, with native listeners weighting this dimension more heavily than non-native 

listeners (Chandrasekaran, Krishnan, et al., 2007). The increasing weighting of pitch contour 

allows for a more stable mapping of tone categories across contexts and talkers with varying 

fundamental frequencies like native listeners, which could increase the probability of 

successful categorization and learning.

Successful learners must establish new representations of novel tone categories by mapping 

highly time-varying pitch patterns to stable tone categories (Feng et al., 2019), a key step for 

learning the lexicon. To achieve this, learners would likely need to update their internally 

emerging representations with an increased weighting of key dimensions that underlie the 

native tone perceptual space. Here, we assess the extent to which the emerging neural 

representations of tone categories and the underlying dimensions, acquired in adulthood are 

similar to the representations in native Mandarin listeners who use tones linguistically. We 

specifically compare the detailed representational structure (including all tonal contrasts 

under different syllable contexts) in the brain with a hypothesis that more successful learners 
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demonstrate emerging representational patterns that are more similar to those in native 

listeners.

Finally, we test the hypothesis that the corticostriatal learning systems that are sensitive to 

feedback valence are critical neural driving sources of individual differences in learning 

efficacy and the training-related neural representational plasticity in adulthood. An emerging 

perspective of the neural functionality of feedback is that adult learners require feedback, 

processed by the corticostriatal networks to build novel speech category (i.e., sound-to-

category) representations (Chandrasekaran, Yi, et al., 2014; Feng et al., 2019; Lim et al., 

2019; Yi et al., 2016). Per the dual-learning systems (DLS) model (Chandrasekaran, Koslov, 

et al., 2014; Chandrasekaran, Yi, et al., 2014), a reflective (sound-to-rule mapping) system 

and a reflexive (sound-to-reward mapping) system operate on a trial-by-trial basis to assist 

sound-to-category learning. The reflective system involves the frontoparietal attentional 

network and the hippocampus, which operates by generating and testing hypotheses based 

on corrective feedback; the reflexive system, on the other hand, involves the striatum in 

mapping stimuli to motor responses that result in rewards. This DLS model focuses on 

speech category learning in adulthood. The corticostriatal systems that subserve category 

learning in the DLS model may be ubiquitous to the acquisition of other language sub-

components for adult learners. Indeed, previous studies have proposed comparable cortical-

subcortical systems that drive reward-dependent acquisition of language components, e.g., 

word learning (Ripolles et al., 2016; Ripolles et al., 2014).

To test the two hypotheses, we analyzed data from a tone-category learning experiment that 

leveraged previously collected functional magnetic resonance imaging (fMRI) data to assess 

emerging representations in English-speaking learners (n = 53) as they learned to categorize 

non-native tone categories with feedback (Feng et al., 2019; Yi et al., 2016). To quantify the 

degree of the nativeness in neural representational structure for each learner, we conducted a 

new fMRI study in which a group of native Mandarin speakers (n = 33) performed the same 

tone categorization task with the same set of stimuli as the non-native learners but without 

feedback. The behavior response patterns of the learners were modeled with representational 

models that are informed by the acoustics and non-acoustic category-related features as well 

as the neural representational patterns from the native Mandarin speakers to examine the 

degree of emerging nativeness in representations. Importantly, using inter-subject neural 

representational similarity (IS-NRS) analysis (Chen et al., 2017; Diedrichsen & 

Kriegeskorte, 2017), we measured the extent of shared patterns in neural representational 

structure between learners and native listeners (i.e., IS-NRS). To test our hypotheses, we 

then used a predictive modeling approach (Gabrieli et al., 2015; Rosenberg et al., 2016) with 

learners’ IS-NRSs as neural predictors to predict their behavioral learning efficacy (i.e., 

speed and outcome). To further evaluate the predictability of IS-NRS, we compared the 

predictive power of IS-NRS with those of models with other neural representational 

measures. To assess the detailed representational structure underlying successful learning, 

we combined the predictive analytics and a data-driven single vector decomposition 

procedure that estimated the relationship between dimensionality and learning efficacy. 

Finally, to evaluate the underlying driving factors of the inter-individual variability in 

learning success and emerging representations, we calculated a neural feedback sensitivity 
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index to predict learning speed and outcome as well as the degree of learners’ nativeness in 

neural representations (i.e., IS-NRS).

Materials and Methods

Participants

Native speakers of Mandarin (n = 33; 18 females; right-handed; age range, 20–37 years; 

mean age = 25.5 years) were recruited from the communities around the National Taiwan 

University, Taipei. These native participants were highly proficient at listening and speaking 

in standard Mandarin. They were recruited to participate in a tone categorization fMRI 

experiment designed specifically for the current study. This experiment was approved by the 

Research Ethics Committee at National Taiwan University. Native speakers of English were 

recruited from the communities around The University of Texas at Austin (n = 53; 39 

females; right-handed; age range, 18–35 years; mean age = 21.8 years). These English-

speaking participants did not have tonal language experience and had minimal formal music 

training experience (< 3 years). All the participants reported normal hearing ability which 

was confirmed by audiological testing (pure tone thresholds < 25 dB HL at 1, 2, and 4 kHz). 

They had normal or corrected-to-normal visions and did not have any neurological 

impairments. Training protocols and materials were approved by the Institutional Review 

Board of The University of Texas at Austin. All participants provided written informed 

consent and were monetarily compensated for their time.

Stimulus

Natural exemplars (n = 40) of the four Mandarin tones (T1: high-flat; T2: low-rising; T3: 

low-dipping; T4: high-falling) were generated by two native Mandarin speakers (originally 

from Beijing; 1 female) in the context of five monosyllabic Mandarin Chinese words 

(/bu/, /di/, /lu/, /ma/, and /mi/) (see spectrograms of sample stimuli in Figure S1A, 

Supplementary Materials). These syllables were chosen because they also exist in the 

American English syllabic inventory. Therefore, the neural representations of native and 

non-native speech categories can be examined for the learners and compared with the native 

Mandarin speakers. The stimuli were normalized for an RMS amplitude of 70 dB and a 

duration of 442 ms (Perrachione et al., 2011). Both learners and native speakers heard the 

same set of stimuli during the experiments.

Experimental procedure

In the native tone-categorization fMRI experiment, Mandarin-speaking participants were 

required to categorize sounds into one of the four categories during scanning by pressing the 

“1”, “2”, “3”, or “4” buttons using an in-scanner response box, with category-response 

mapping counterbalanced across participants. Native participants were not provided 

feedback following categorization responses. They briefly practiced categorization before 

scanning to establish category-response mapping. To reduce the interference of scanner 

noise to speech perception, we employed a customized sparse-sampling imaging sequence 

with an 800-ms silence gap between every two consecutive imaging acquisitions (Figure 

S1B, Supplementary Materials). Each sound was presented (duration = 442 ms) within the 

silence gap 100-ms after each imaging acquisition. Each sound was presented once in each 
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block and the order of stimuli randomly varied across blocks. To better estimate the 

hemodynamic responses for each trial, we added 20 null trials (i.e., silence, duration = 5 s) 

randomly between sound trials as jittered inter-trial intervals in each block. To accurately 

estimate the activation patterns of the sounds, native participants completed at least five 

blocks of 40 trials each of tone categorization (six participants completed five blocks [200 

trials], and 27 completed six blocks [240 trials]). Each sound (e.g., /bu4/; collapsed across 

talkers) was repeated 10 to 12 times. The significant number of repetitions for the same item 

ensures a sufficient signal-to-noise ratio and accurate activation estimation.

The non-native sound-to-category training procedure has been extensively described in 

previous studies (Feng et al., 2019; Yi et al., 2016). Briefly, English-speaking participants 

performed a tone categorization task during scanning, in which they were required to learn 

to map the sounds onto four categories. The fMRI experiment consisted of six contiguous 

training blocks of 40 trials each. In each block, each trial started with a fixation cross and the 

auditory stimulus was presented for 442 ms. Participants were required to make a 

categorization response within two seconds. Following the stimulus presentation and 

categorization response, corrective feedback (i.e., “RIGHT” or “WRONG”) was displayed 

for 750 ms (see Figure 1A). If the participant did not respond within the two seconds, the 

response did not record and warning feedback was presented (i.e., “TIME”). To effectively 

model brain signals for stimulus and feedback presentation separately, we employed a 

jittered stimulus-feedback interval design (2–4 sec; feedback-stimulus interval = 1–3 sec; 

pooled from a uniform distribution) (Birn et al., 2002; Dale, 1999; Liu et al., 2001). Each 

sound stimulus was presented once within each block, with a total of 240 trials in the 

training experiment.

Imaging acquisition

For the native tone-categorization experiment, all MRI data were acquired using a Siemens 

3T Magnetom Prisma MRI system with a 20-channel head coil at Imaging Center for 

Integrated Body, Mind, and Culture Research, National Taiwan University. Functional 

images were acquired using a T2*-weighted gradient echo-planar imaging (EPI) pulse 

sequence [repetition time (TR) = 2,500 ms with 800-ms silence gap, echo time (TE) = 30 

ms, flip angle = 90°, 31 slices, field of view (FOV) = 224 × 224 mm2, in-plane resolution = 

3.5 × 3.5 mm2, slice thickness = 3.5 mm with 1.1 mm gap, Acceleration factor = 2]. T1-

weighted high-resolution structural images were acquired using a magnetization prepared 

rapid acquisition gradient echo (MPRAGE) sequence (192 slices, TR = 2.0 sec, TE = 2.3 ms, 

flip angle = 8 deg, voxel size = 0.94 × 0.94 × 1 mm3).

For the sound-to-category training experiment, MRI data were acquired using a Siemens 3T 

Magnetom Skyra MRI system with a 32-channel head coil at the Biomedical Imaging Center 

at The University of Texas at Austin. Functional images were obtained using a gradient-echo 

multi-band EPI pulse sequence (flip angle = 60 deg; TR = 1.8 s; TE = 30 ms; FOV = 250 × 

250 mm2; in-plane resolution = 2 × 2 mm2; 36 axial slices; slice thickness = 2 mm; distance 

factor = 50%) using GRAPPA with an acceleration factor of 2. Whole-brain T1-weighted 

structural images were obtained via MPRAGE sequence (176 slices, TR = 2.53 sec; TE = 
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3.37 ms; FOV = 250 × 250 mm2; 256 × 256 matrix; voxel size = 1 × 1 × 1 mm3; distance 

factor = 0%).

Behavioral data modeling

Estimation of learning outcome and speed.—The learning outcome is defined as the 

average tone identification accuracy in the last three blocks. There are three considerations 

for this learning outcome definition. Firstly, at the group level, learning performance in the 

last three blocks was relatively stable compared to the first three blocks. That is, tone 

identification performance was not significantly improved in the last three blocks (Ps > 

0.05), which suggests that the last three blocks may be a relatively stable learning phase. 

Secondly, individual differences in learning outcomes are based on the fact that the amount 

of training was the same across learners. Therefore, we selected the same number of training 

blocks for each learner. Thirdly, the division of two training phases (i.e., the first and the last 

three blocks) ensures that there is enough number of trails for the brain estimation of 

stimulus items for the multivariate analyses. Based on the above considerations, the last 

three blocks were defined as the “late phase” of training, and the first three blocks were 

defined as the “early phase.” It is worthy to note that this training phase definition mainly 

refers to the amount of training that the learners received instead of the proficiency level in a 

certain phase achieved by individual learners.

To model the non-native tone learners’ learning curves properly for the estimation of 

learning speed, we used four functions (i.e., hyperbolic, logarithmic, power, and linear 

regression functions) to fit each subject’s block-by-block category identification accuracies, 

separately (Figure 1B). The goodness of fits (GOF) of the modeling with each function were 

calculated first by estimated the root mean square error (rmse) between a fitting line and the 

actual learning curve for each learner. The GOF of the three curvilinear functions were then 

compared with that of the linear function at the group level to examine whether the 

curvilinear functions are better in capturing the learning progression than that of the linear 

function. We found that only the GOF of the power function (i.e., Y = aXb; X = training 

block and Y = tone identification accuracy) was significantly better than the linear function 

(t(52) = −4.16, P < 0.001). Parameters a and b from the power function are both associated 

with the learning progression (i.e., the parameter a represents the steepness of the fitting 

curve like the slope parameter in the linear function, while the parameter b represents the 

changes in learning gain based on the same amount of training between training blocks; also 

see individual fitting curves with the power function in Figure S2, Supplementary 

Materials). Therefore, we combined the two parameters by multiplying them to represent the 

learning speed (i.e., LS = a × b; see Figure 1C). The learning speed was significantly 

correlated with the learning outcome (r = 0.91, P < 0.001) but it was not significantly 

correlated with the first block categorization performance (r = 0.216, P = 0.120). The two 

learning measures (i.e., learning outcome and speed) share 82% variances. That is, there are 

around 18% non-overlapped variances that are unique to each learning measure. We 

hypothesize that these non-overlapped variances may be predicted by different neural 

sources. Therefore, we used both measures as learning success indices for predictive 

modeling.
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Categorization response-pattern modeling with behavioral representational 
similarity analysis (bRSA).—We estimated learners’ behavioral representational 

structure during training by using bRSA to model their behavioral confusion/response 

patterns. The bRSA reveals the model fits (i.e., Spearman’s correlations) between predefined 

representational models (i.e., representational dissimilarity matrices [RDMs]) and the 

response confusion matrices for each block. We created six RDMs to examine what type of 

dimensions/information emerge or change following training. These RDMs are 20-by-20 

dissimilarity matrices with four tones and five syllables, including dissimilarities between all 

pairs of tonal contrasts. The dissimilarities were calculated based on different acoustic and 

non-acoustic information, including native neural activation patterns (Native nRDM), binary 

tone-category labels (CAT), fundamental frequency (F0) height, F0 slope, and syllable 

identity (see Figure 1D). The native nRDM was constructed based on the neural activation-

pattern dissimilarities between each pair of sound items derived from the native Mandarin 

speakers within a predefined speech/auditory-perception-related brain mask (see Figure S3, 

Supplementary Materials). This mask was generated from a meta-analysis in Neurosynth.org 

by searching the topic dataset with keywords “speech”, “auditory”, and “perception.” The 

dataset consists of 400 topics extracted with linear discriminant analysis (LDA) from the 

abstracts of all articles in the Neurosynth database as of July 2018. This automatic meta-

analysis included 269 studies (Topic 180) with a list of highly related topic words, including 

“auditory”, “perception”, “speech”, “non-speech”, “sound”, “processing”, and so on. We 

used this independent brain mask to avoid any ROI-selection bias. This brain mask was only 

used for creating native nRDM for bRSA. Including this native nRDM model for the bRSA 

was to estimate to what extent the learners’ behavioral response patterns were similar to the 

native neural representation patterns. The F0 height RDM was constructed by calculating the 

acoustic distance between each pair of sounds based on their mean F0 estimates. The F0 

slope RDM was constructed by calculating the distance between each pair of sounds based 

on their F0 slopes (i.e., F0 height changes over time). For the multidimensional (MD) 

model, we created a two-dimensional space with the F0 height and slope dimensions. Each 

dimension was normalized before calculating the distance. The Euclid distance between 

each sound pair within this two-dimensional space was computed and converted into a 

distance matrix (see Feng et al., 2018a for the detailed RDM construction procedure). We 

then normalized these RDMs by scaling between 0 (low dissimilarity, i.e., close in the 

distance) and 1 (high dissimilarity, i.e., far from each other in the distance). The binary tone-

category RDM was constructed based on combinations of the four category labels (i.e., 0 for 

the same category, 1 for different categories). The syllable RDM was constructed based on 

the identity of the five syllables (i.e., 0 for the same syllable, 1 for different syllables). These 

six RDMs were correlated with learners’ response confusion matrices in a block-by-block 

manner. Learners’ response confusion matrices were created based on their categorization 

responses. If two sounds had an identical response, then this pair was coded as 0 in the 

confusion matrix; otherwise coded as 1. Using this procedure, we created two confusion 

matrices in each block (one for each talker) for each learner. The two matrices were then 

averaged for each block. Finally, we calculated the Spearman’s correlations (i.e., model fits) 

between each RDM and confusion matrices. We also examined the relationships between the 

RDM model fits and learning outcome and speed across subjects to see which RDM 

explains most of the inter-individual variance in learning success.
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Neuroimaging data analysis

Preprocessing for multivariate pattern analyses (MVPA).—All MRI data were 

preprocessed using SPM12 (Wellcome Department of Imaging Neuroscience, London, UK; 

www.fil.ion.ucl.ac.uk/spm/). Briefly, functional images were head-movement corrected by 

coregistering each image with the mean image. The high-resolution structure image was 

coregistered to the mean functional image for each subject. The normalization 

transformation parameters were then estimated using a segmentation-normalization 

procedure with the co-registered structure image and used to normalize the functional 

images to the Montreal Neurological Institute (MNI) space for group-level statistical 

analyses. To model single-trial brain activation responses for MVPA, the realigned 

functional images in the native space were fed into the subject-level GLM analysis with the 

least-squares single (LSS) approach (Mumford et al., 2014; Mumford et al., 2012). 

Specifically, for the tone-category training dataset, a design matrix was constructed with a 

regressor of interest for each trial during sound or feedback presentation; a regressor of non-

interest consisted of other events (i.e., feedback or sound presentation for the current trial, 

and stimulus and feedback presentations for the other trials), six head movement regressors 

and a session mean regressor for each training block individually. Therefore, 480 subject-

level GLM models (240 models for sound presentation and another 240 models for 

feedback) were constructed and estimated for each subject for the training experiment. 

Similarly, for the native tone-categorization experiment, 200 or 240 subject-level GLM 

models (for the sound presentation events) were constructed and estimated. The t-statistic 

brain maps were calculated for each trial and further used for MVPA (Misaki et al., 2010).

MVPA

Inter-subject neural representational similarity (IS-NRS) analysis.—We 

calculated three types of MVPA measures for learning-success prediction, including IS-

NRS, model-based representational similarity analysis (RSA) measures, and neural feedback 

sensitivity. The three types of measures were considered as predictive features for predictive 

modeling (see Figure S4A for overall data processing pipeline). We quantified the degree of 

nativeness in neural representational structure for the learners by measuring the IS-NRS 

between each non-native learner and each of the native-Mandarin speakers for each 

anatomical defined region (see Figure 2A for a graphical illustration of the analysis 

procedure). Higher IS-NRS indicates greater similarity in the neural representations of the 

speech sound pairs relative to the native listeners. The IS-NRS is a derivative of the RSA, 

enabling us to evaluate similarity in neural representational structures (i.e., nRDMs) between 

subjects within the same stimulus space instead of in the subjects’ voxel space (Kriegeskorte 

& Kievit, 2013; Kriegeskorte et al., 2008). In the IS-NRS calculation pipeline, nRDMs were 

first generated within each subject and compared between subjects from the two groups 

(Figure 2A). Since both groups of participants heard the same sets of sound stimuli, their 

neural representations were compared in the same space. This two-step dissimilarity-

similarity analysis approach can capture the similarity in representational structure between 

datasets from different scanners, populations, imaging modalities, and even species while 

ensuring that the representational similarity effect that is not due to the differences between 

datasets in these variables.
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To calculate the IS-NRS, we extracted activation patterns from 94 regions of interest (ROIs) 

for both the learners and the native listeners based on an anatomical-defined atlas (i.e., 

Anatomical Automatic Labeling 2 [AAL2]) (Rolls et al., 2015). Cerebellum regions were 

removed because the cerebellum was not covered for some of the learners’ data. Since two 

groups of datasets differ slightly in imaging parameters (e.g., number of voxels and voxel 

size, etc.) and there are large inter-individual differences in brain anatomy, the ROI-based 

approach ensures that the neural representational structures were compared in the same 

anatomical-defined areas between the two group of subjects. The AAL2 atlas in the MNI 

space was projected back to the native space for each subject, and the activation patterns 

when listening to the stimuli were extracted for each ROI (Figure 2A). Then, the nRDMs 

were calculated based on the activation patterns for each ROI and subject (note that 

dimensionality reduction was additionally conducted before the nRDM calculation to 

evaluate the representational dimensionality underlying successful learning; refer to the 

Representational dimensionality evaluation section). Calculating nRDMs ensures that 

different subjects’ neural patterns were converted onto the same stimulus representational 

space. In this space, the distance (i.e., dissimilarity) between each pair of sounds (or 

phonetic contrasts) can be quantified based on their activation patterns and can be compared 

with other subjects or model-based RDMs. For each ROI, we calculated the IS-NRS for each 

learner-native speaker pair with Spearman’s ranking correlation based on two vectorized 

nRDMs. The variances of hand-response RDM (left vs. right hand) were controlled for using 

the partial correlation approach to rule out the potential confounding of hand-response 

pattern similarity between the two groups. Therefore, each learner has 33 IS-NRSs (33 

native listeners) for each ROI. These IS-NRSs were then averaged for the same learner in 

each ROI. The resulting IS-NRS data (i.e., a learner-by-ROI matrix) were used as predictive 

features to train and validate prediction models for the prediction of individual learners’ 

behavioral learning outcome and speed.

Representational dimensionality evaluation.—To evaluate the representational 

dimensionality underlying successful learning (i.e., how many dimensions underlying 

learners’ representational structure explains individual differences in learning success), we 

additionally used principal component analysis (PCA) with the single vector decomposition 

algorithm to decompose learners’ sound-induced activation patterns into principal 

components (PCs) before IS-NRS calculation. We used a different number of PCs (maximal 

20 PCs due to 20 sound items) to re-calculate the distance (i.e., Euclidean distance) between 

each sound pair and to construct the nRDMs for the learners. The IS-NRSs were calculated 

based on the dimension-constrained nRDM (see the procedure in Figure 5A and the overall 

processing pipeline in Figure S4, Supplementary Materials). Finally, a subject-by-ROI-by-

PC IS-NRS matrix was obtained for the predictive modeling analysis. By using this 

dimension decomposition approach with predictive modeling, we can assess the 

dimensionality underlying individual learning success and parametrically examine the 

relationship between representational dimensionality and individual differences in learning 

success.

Model-based representational similarity analysis (RSA) and searchlight 
approach.—To compare the predictive power of the IS-NRS and other representational 

Feng et al. Page 10

Neurobiol Lang (Camb). Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measures, we also calculated the representational similarities between learners’ nRDMs and 

five predefined model-based RDMs. The five RDMs were derived based on the acoustic 

properties and phonetic category labels of the stimuli (i.e., CAT, MD, F0 height, F0 slope, 

and Syllable; see Figure 2C). These model-based representational similarities were then 

entered into the predictive modeling to estimate to what extent these representational 

measures could be predictors of learning success. We further examined whether the 

predictive power of IS-NRS outperforms these model-based RSA measures. Cross-

validation with bootstrapping and permutation procedures was used to determine the 

statistical significance and stability of the predictive models (see the next section for details). 

We also conducted model-based RSA with the searchlight approach (Kriegeskorte et al., 

2006) for the five model RDMs to examine how the learners’ neural representations of those 

stimuli-related information change following training. The same searchlight RSA was also 

conducted for native speakers for comparison. This searchlight approach has been described 

extensively in previous studies (Feng et al., 2021; Feng, Gan, et al., 2018; Feng et al., 2019). 

We briefly described the approach here. This searchlight RSA analysis was conducted across 

the whole brain. In each searchlight sphere (radius = 3 voxels), an nRDM was generated and 

then correlated with each of the five model RDMs with Spearman’s correlation. The 

correlation value was then normalized with the Fisher Z-Transformation. This z value was 

then mapped back to the center voxel of the sphere. This RSA was conducted for each voxel 

to generate representational maps for each learner. We conducted this searchlight RSA for 

the early and late blocks separately. For the group-level analysis, the individual RSA maps in 

the learners’ native space were first normalized to standard MNI space and then fed to a one-

sample t-test against chance.

Neural sensitivity to feedback valence.—To examine the extent to which individual 

differences in neural sensitivity to corrective feedback relates to learning success and 

learners’ nativeness in neural representations (i.e., IS-NRS), we estimated the ROI-based 

feedback-type classification accuracy and used it as a predictor to predict individual learning 

outcomes and speed as well as the IS-NRS. We operationally defined neural sensitivity to 

feedback valence as the feedback-type classification accuracy (correct vs. incorrect) based 

on the single-trial brain activation patterns. In each ROI, we used an LDA classifier (Chang 

& Lin, 2011) with a leave-one-block-out cross-validation (CV) procedure to classify 

individual trials’ feedback types (correct or incorrect). Missing trials (i.e., trials for which 

there was no response; 7.1% on average across non-native learners) were removed before the 

classification analysis. We conducted the classification analysis separately for the early and 

late phases of training. Two learners were removed from the analysis because they achieved 

100% accuracy in one of the last three blocks. The ratio of correct and incorrect feedback 

trials was varied across learners and training phases. To avoid this inherent imbalance, we 

used a balanced leave-one-block-out partition procedure. This procedure randomly selected 

the same number of correct and incorrect feedback trials for both training and testing so that 

each feedback type occurs equally often in the training and testing chunks. Higher 

classification accuracy indicates higher neural sensitivity to the feedback-valence of 

learners’ brains. The ROI-based classification accuracies were used as predictive features to 

predict learning outcomes and speed as well as the IS-NRS. If the predictive power is 
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significantly higher than chance, the neural feedback sensitivity plays a critical role in 

learning success and the emergence of native-similar neural representations.

Predictive modeling analysis

To determine whether the neural measures significantly predict learning outcomes and speed 

as well as the nativeness of the emerging neural representations, we used multiple linear 

regression and linear support vector regression (SVR) as prediction algorithms in 

combination with a 10-fold CV procedure to train and validate prediction models. The 

neural measures (i.e., IS-NRS, five model-based representational measures, and neural 

feedback sensitivity index) obtained from all ROIs were used as predictive features, 

separately. Neural measures from all subjects were combined into an S-by-F matrix where S 

is the number of subjects, and F is the number of features (i.e., ROI). We used a nested 10-

fold CV procedure for feature selection, dimension reduction, model construction, and 

estimation (see Figure 2B and Figure S4B for graphical illustrations). This CV procedure 

avoids obtaining overfit models with a large number of noisy features and ensures testing the 

models with unseen data points (i.e., generalization ability) (Feng, Ingvalson, et al., 2018). 

The nested CV procedure consisted of two levels of nesting (inner and outer) for feature 

selection, dimension reduction, and model validation. At the inner level, we employed the 

linear Pearson correlation analysis to remove irrelevant features based on the training sets 

(Pereira et al., 2009; Smialowski et al., 2010), where only features (e.g., IS-NRS in the 

superior temporal gyrus) showing significant correlations with learning outcomes or speed 

were selected. To avoid selecting features that were related to learners’ first block tone 

categorization performance instead of speech category learning success (i.e., speed and 

outcome), we controlled for the inter-individual variance of the categorization accuracy in 

the first block in the feature selection step. Therefore, the predictive powers of the models 

reflect how well those selected ROIs in predicting learners’ learning efficacy. Different 

feature selection thresholds (i.e., P = 0.01 and 10% of total features) were tested to assess 

the consistency and stability of the predictive performance. To further reduce the 

dimensionality of the predictors, we conducted the principal component analysis for the 

selected features and select the relevant principal components (P < 0.05) for further model 

training. The feature selection and dimension reduction procedures were conducted only on 

the training set, which was independent of the outer-level model testing (Figure 2B). That is, 

90% (i.e., 9-fold) of the data were used for feature selection, dimension reduction, and 

model training while the hold-out 10% were for testing, repeating 10 times (i.e., 10-fold 

CV). The linear SVR algorithm with default parameters (i.e., C = 1, Gamma = 1/number of 

features) was also used to access the multivariate predictive power of the predictors. We 

used functions from a MATLAB package LIBSVM (Chang & Lin, 2011) in combination 

with in-house scripts to conduct the predictive modeling analysis. We examined the 

predictive power of a given neural measure by calculating the Pearson’s correlation between 

the predicted and observed scores (rval[predicted, observed]). The predictive modeling analysis 

was conducted separately for the early and late phases of training.

The statistical significance of the prediction was evaluated using a non-parametric 

permutation procedure. To test whether the predictive power of each model occurred by 

chance, we used a non-parametric permutation procedure to generate a null distribution of 
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the predictive power by fully shuffling the predictive features and learning performance 

across learners for each CV. Note that each feature and learning performance was permuted 

independently to generate a fully randomized data matrix, and the 10-fold CV procedure 

was conducted based on the randomized dataset. This data randomization and CV procedure 

were repeated 10,000 times, and the 95th percentile points of each distribution were used as 

the critical values for a one-tailed t-test against the null hypothesis with P = 0.05. To test the 

stability of the prediction, we used a bootstrapping procedure by randomly dividing all the 

learners into ten folds and conducted the 10-fold CV. Each CV prediction would be slightly 

different because the composition of the training and testing subjects were different for each 

iteration. We repeated this bootstrapping procedure 10,000 times. We identified the most 

contributing regions by comparing each region’s correlation values derived from the feature 

selection procedure with its corresponding permutation-based correlation distribution. These 

regional permutation-based p values were corrected with the false discovery rate (FDR) 

approach.

Results

Behavioral results

Tone categorization performance for the native Mandarin speakers was close to ceiling 

(accuracy = 97.3 ± 2.66 % [mean ± SD], reaction time [RT] = 927.98 ± 109.26 ms). In the 

tone-category training fMRI experiment, English-speaking participants learned to categorize 

Mandarin tones significantly above-chance following training (first block: the mean 

accuracy across the participants was 22%, range = 0–45%, SD = 9%; chance level = 25%; 

first block vs. chance: t(52) = −2.38, P = 0.021; the final block: the mean accuracy was 47%, 

range = 13–100%, SD = 26%; final block vs. chance: t(52) = 6.27, P < 0.001; see Figure 1B 

for the group and individual learning curves). The category identification accuracy 

significantly increased over blocks (the first vs. final block paired t-test: t(52) = 7.69, P < 

0.001). Similarly, the mean accuracy of the late phase of training (i.e., the last three blocks) 

was significantly higher than in the early phase (t(52) = 6.41, P < 0.001). The learning 

outcome was operationally defined as the mean accuracy in the late phase. Learning speed 

was operationally defined as the model fitting parameters for individuals’ learning curves 

with a power function (Figure 1C). Learning speed was not significantly correlated with the 

accuracy in the first block (r = 0.216, P = 0.120) whereas learning outcome was significantly 

correlated with the accuracy in the first block (r = 0.45, P < 0.001). These results 

demonstrated that compared to the outcome, learning speed may be more related to learners’ 

sound-to-category learning gains instead of the first block accuracy. Because the learning 

speed and outcome are two critical indices reflecting learning efficacy, we used both for the 

predictive modeling analyses while controlling for the inter-individual variance of block 1 

accuracy.

The behavioral representational similarity analysis (bRSA, see Figure 1D for graphical 

analysis procedure) showed that RSA model fits significantly increased over blocks for the 

native nRDM (repeated measures ANOVA; main effect of block: F(5, 260) = 10.42, P < 

0.001) and other tone-category-related RDMs, including CAT (F(5, 260) = 20.24, P < 0.001), 

MD (F(5, 260) = 12.78, P < 0.001), F0 height (F(5, 260) = 13.43, P < 0.001), and F0 slope 
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(F(5, 260) = 5.94, P < 0.001). However, the RSA model fits of the Syllable RDM decreased 

over blocks (F(5, 260) = 9.24, P < 0.001; Figure 1E). Moreover, individual differences of the 

model fits were significantly correlated with the individual differences of learning outcome 

(Native nRDM: r = 0.91; CAT: r = 0.95; F0 height: r = 0.81; F0 slope: r = 0.83; MD: r = 

0.89; Syllable: r = −0.73; Ps < 0.001; see Figure 1F for a representative scatter plot) and 

speed (Native nRDM: r = 0.80; CAT: r = 0.85; F0 height: r = 0.72; F0 slope: r = 0.74; MD: r 
= 0.78; Syllable: r = −0.61; Ps < 0.001). These modeling results indicate that native-similar 

categorization response patterns emerged for the learners following training. The response 

patterns were highly related to the individual differences in pitch encoding and learning 

success.

The degree of nativeness in neural representational structure predicts learning success

We employed inter-subject neural representational similarity analysis to measure the degree 

of nativeness in neural representational structure (i.e., IS-NRS) for individual learners, as 

compared to a group of native Mandarin-speaking listeners (see Figure 2 for the IS-NRS 

calculation procedure). Significant similarities with native listeners in neural 

representational structure emerged at the late phase of training in the bilateral superior 

temporal gyrus (STG) and right precentral gyrus (R.PreCG) (Figure 4B). Similar to the 

emerging native-similar neural representations, the learner’s neural representations of tone 

categories and pitch-related information emerged in the late phase of training, demonstrated 

using the searchlight-based RSA with predefined category and pitch-related RDMs (CAT, 

MD, F0 height, and slope RDMs; Figure S5; Also see Figure S6 for IS-NRS comparisons 

between learners and native speakers). Comparing the whole-brain searchlight model-based 

RSA brain maps between the native listeners and the learners for the tone-category-related 

RDMs, we found that the searchlight RSA patterns of the learners in the late phase was 

approaching the patterns of the native listeners, although the RSA correlations were less 

robust in extent and yielded lower intensity. In contrast, the syllable-related information was 

less and less represented in the brain following training (Figure S5). Altogether, these results 

indicate that the learners enhanced the neural representations of learning/task-relevant tone-

category-related information while decreased or suppressed the representations of the 

learning/task-irrelevant segmental units (e.g., consonants and vowels).

We used IS-NRS as an indicator of learners’ nativeness in neural representational structure. 

The ROI-based IS-NRS and other model RSA measures were used as predictive features for 

learning-success prediction analyses (see Figure S4 for the overall analysis pipeline). We 

used cross-validation (CV) and non-parametric permutation procedures with 10,000 

iterations to determine the statistical significance of each predictive model (see Figure 2B 

for the CV procedure). We also employed the bootstrapping procedure to evaluate the 

reliability of the prediction models. We found that the IS-NRS in the late phase of training 

was significantly predictive of learning outcome (permutation test: P = 0.004) and speed 

(permutation test: P = 0.006; see Figure 3A&B for the predictive powers), whereas the 

predictive powers were at chance levels for both outcome (P = 0.582) and speed (P = 0.915) 

predictions in the early phase (blue-color distributions in Figure 3B). We conducted 

additional prediction analyses with fine-tune distinction between different phases of training. 

To increase the signal-to-noise ratios of the activation estimation for individual stimulus 
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items, we combined data from two consecutive blocks. Therefore, the whole training session 

was divided into five parts (i.e., blocks 1–2, 2–3, 3–4, 4–5, and 5–6). We re-calculated the 

IS-NRSs for these blocks and re-conducted the learning-outcome and -speed prediction 

analyses. The results were shown in Figure S7 (Supplementary Materials). We found that the 

prediction powers increased as a function of training blocks. Only the IS-NRSs at the last 

three blocks (i.e., blocks 4–5 and blocks 5–6) were predictive of learning success. These 

additional results were consistent with the above prediction results showing that the IS-

NRSs at the initial phase of training were not predictive of the learning speed and outcome. 

Altogether, these results demonstrated that the degree of the nativeness of the neural 

representational structure in the late training sessions was tightly related to individual 

differences in learning efficacy.

To further compare the predictive power of IS-NRS with other model-based representational 

measures, we conducted the same predictive modeling with other model-based RSA 

measures as predictors. Four tone-category-related RDMs (i.e., CAT, MD, F0 height, and F0 

slope) and one segmental-unit-related RDM (i.e., Syllable) were used to generate RSA 

representational measures for all ROIs (Figure S4A). With the predictive modeling, we 

found that the IS-NRS yielded the highest predictive power (median r[predicted, observed] = 

0.510, P = 0.004 for outcome prediction; median r[predicted, observed] = 0.412, P = 0.006 for 

speed prediction). Three of the tone-category-related RDMs also yielded predictive powers 

significantly better than chance (CAT: outcome prediction: r[predicted, observed] = 0.430, P = 

0.013, SD = 0.097; speed prediction: r[predicted, observed] = 0.416, P = 0.012, SD = 0.077; 

MD: outcome prediction: r[predicted, observed] = 0.379, P = 0.014, SD = 0.082; speed 

prediction: r[predicted, observed] = 0.391, P = 0.013, SD = 0.074; F0 height: outcome 

prediction: r[predicted, observed] = 0.304, P = 0.025, SD = 0.072; speed prediction: 

r[predicted, observed] = 0.353, P = 0.017, SD = 0.083). However, the F0 slope and Syllable 

models did not show significant better-than-chance predictive powers (F0 slope: outcome 

prediction: r[predicted, observed] = 0.036, P = 0.388, SD = 0.119; speed prediction: 

r[predicted, observed] = 0.083, P = 0.273, SD = 0.118; Syl: outcome prediction: 

r[predicted, observed] = −0.053, P = 0.649, SD = 0.120; speed prediction: r[predicted, observed] = 

0.151, P = 0.182, SD = 0.118).

To further confirm that the predictive power of the IS-NRS was not due to sharing the same 

segmental information (i.e., consonants and vowels) between learners and native listeners, 

we recalculated the IS-NRS while additionally controlling for the Syl model. We confirmed 

that the resulting predictive power remained significant (outcome prediction: 

r[predicted, observed] = 0.510, P = 0.003; speed prediction: r[predicted, observed] = 0.403, P = 

0.008). We also examined to what extent the predictive power of the IS-NRSs was due to the 

joint variances of F0 height and slope representations by controlling for the variance of the 

two RDMs. We found that the predictive power of the IS-NRS was diminished (outcome 

prediction: r[predicted, observed] = −0.056, P = 0.669; speed prediction: r[predicted, observed] = 

−0.081, P = 0.732) when controlled for the variances of both RDMs. These results indicate 

that the representational models derived from native listeners’ neural patterns and the 

resulting IS-NRSs outperformed other representational measures in differentiating 

successful from less-successful learners.
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To examine whether the ROIs with positive or negative correlation patterns contributed 

equally to the predictive performance, we reran the predictive modeling with two feature 

selection (FS) procedures to disentangle the effects of the two types of ROIs. In one FS, we 

only selected ROIs that showed positive correlations between the IS-NRS and learning 

performance in the training sets to build predictive models, while in another FS, we only 

selected the ROIs with negative correlations. We found that those models with only positive-

correlation ROIs were able to significantly predict learning success while the predictive 

powers with negative-correlation ROIs were at chance. These results indicate that more 

native-similar neural representations for the learners are associated with higher learning 

efficacy.

To identify brain regions that significantly contributed to the prediction models with IS-

NRS, we estimated the statistical significance of each region using a non-parametric 

permutation-based approach. In the predictive modeling, we generated a bootstrapping-

based correlation distribution and a permutation-based null distribution (10,000 iterations) 

for each region based on the training sets (i.e., 90% of randomly-selected learners, n = 48). 

The median of the bootstrapping distribution for a given region was compared with the 95th 

percentile of its corresponding null distribution to determine statistical significance. Multiple 

comparison correction was conducted based on the false discovery rate (FDR) approach. We 

found that a speech-related brain network, including the triangular part of left inferior frontal 

gyrus (L.IFGtri), left inferior parietal lobule (L.IPL), left supramarginal gyrus (L.SMG), 

bilateral superior temporal gyrus (STG), left middle temporal gyrus (MTG), right angular 

gyrus (R.AG), and right precentral gyrus (R.PreCG) showed significant contribution to the 

speed-prediction modeling in the late phase (Figure 4A, right panel). Similarly, L.IFGtri, 

L.STG, and R.PreCG contributed significantly to the outcome prediction (Figure 4A, left 

panel). Additional searchlight IS-NRS analyses within the bilateral STG were conducted to 

identify which STG subregions contributing to individual differences in learning success. 

The IS-NRSs were significantly correlated with learning outcomes primarily in the middle 

and anterior portions of the STG (see Figure S8, Supplementary Materials). Taken together, 

these results indicate that learners with greater IS-NRS (i.e., more nativeness in neural 

representations) in the fronto-temporoparietal speech perception network are more 

successful in learning to categorize novel speech categories.

To further examine whether individual differences in the neural representations at the initial 

phase of training relate to the individual differences in the neural representations at the late 

phase, we conducted additional prediction analyses with six neural representational 

measures (i.e., IS-NRS [native-similar representations], CAT [tone category representations], 

F0 height [pitch height representations], F0 slope [pitch direction representations], MD 

[multidimensional pitch representations], and Syl [syllable representations]) as predictive 

features derived from the first two blocks to predict these representational measures at the 

last two blocks. To increase the signal-to-noise ratio of the neural representational 

dissimilarity matrices (nRDMs), we combined the data from blocks 1 and 2 as well as 

blocks 5 and 6, respectively. Across the whole brain (94 ROIs), we did not find any region 

shown a significant prediction effect after correction (i.e., FDR q = 0.05). This finding 

suggests that the initial neural representations may change significantly following training, 
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with successful learners’ representation having native-similar representations relative to less 

successful learners.

Multidimensionality in learners’ neural representations contributes to the learning success

To further reveal the nature of the dimensionality of the emerging native-similar neural 

representational structure underlying successful learning, we used principal component 

analysis with the singular value decomposition (SVD) algorithm to decompose learners’ 

brain activation patterns of the stimuli into independent principal components (PCs) and 

recalculated the IS-NRS with PC-constrained nRDM for predictive modeling (see Figure 5A 

for graphical analysis procedure). This procedure allows us to assess how many dimensions 

of the learners’ representations underlie individual differences in learning success. We found 

that representation dimensionality significantly modulated the predictive powers for both 

learning-speed and -outcome predictions. Predictive power increased as the dimensionality 

increased. Importantly, predictive powers reached a plateau with approximately five PCs 

(speed prediction: median r = 0.52, P = 0.001; outcome prediction: r = 0.42, P = 0.005; 

1PC’s vs. 5PCs’ predictive power: Ps < 0.001; Figure 5B). We also conducted the same 

prediction analysis with PCA for six predefined speech-perception-related regions and found 

that the number of PCs for the maximum predictive powers were varied across regions 

(ranged from two to nine PCs; see Figure S9 in Supplementary Materials). These results 

indicate that successful learners use a multidimensional but also cost-efficient neural 

representational mechanism (i.e., a moderate number of dimensions) to encode the newly-

acquired speech categories. A more straightforward demonstration is shown in Figure 5C. 

We extracted the IS-NRSs (controlled for both hand-response and Syllable RDMs) from the 

significant contributing regions (i.e., L.IFGtri, L.STG, and R.PreCG) and compared them 

between the successful and less-successful learners across different numbers of PCs. Two 

groups of learners were created based on the median split of the learning outcome 

(successful: n = 26, M = 65.0%; less successful: n = 25, M = 24.4%; two of them in the 

median line were removed). We found that successful learners showed greater IS-NRS than 

those of the less-successful learners (group-by-dimensionality ANOVA; main effect of the 

group: F(1, 49) = 16.33, P < 0.001) but only in the late phase; while the group differences 

were significantly increased as the dimensionality increased and reached the maximum at 5–

6 PCs, which was evidenced by a significant group-by-dimensionality interaction effect 

(F(5, 245) = 4.84, P < 0.001).

Neural sensitivity to feedback-valence in the frontostriatal system contributes to individual 
differences in learning success and in the nativeness of neural representations

To evaluate the extent to which the neural sensitivity to feedback valence is a driving factor 

of the behavioral learning success (i.e., outcome and speed) and the degree of nativeness of 

neural representational structure (i.e., IS-NRS), we used the multivariate feedback-type 

classification accuracy as a neural feedback-sensitivity index to predict the learning 

performance and IS-NRS. Higher feedback-type classification accuracy indicates more 

sensitivity to feedback valance (i.e., more robust feedback-valance representations) in the 

brain. At the group level, with a cross-validation procedure that strictly balancing the 

number of correct and incorrect feedback trials, we found that widespread brain regions 

showed significantly above-chance classification accuracy for both early and late phases of 
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training (Figure 6A), including cortical and sub-cortical striatal areas. Note that, 

quantitatively, the classification accuracies in the late phase were slightly higher than in the 

early phase, especially in the frontostriatal regions. The most significant feedback-sensitive 

regions across training phases were within the frontostriatal network, which is consistent 

with previous findings derived by univariate activation analysis that used contrasts of correct 

vs. incorrect feedback (Feng et al., 2019; Yi et al., 2016). Importantly, the neural feedback 

sensitivity in the late phase significantly predicted learners’ behavioral learning outcome 

(median r[predicted, observed] = 0.54, P = 0.003; permutation test) and speed (median 

r[predicted, observed] = 0.60, P = 0.002) (Figure 6B). In contrast, the predictions with feedback 

classification accuracies in the early phase were not significantly better than chance (Ps > 

0.05). Furthermore, the neural feedback sensitivity in the late phase significantly predicted 

the IS-NRSs (median r[predicted, observed] = 0.40, P = 0.011) of the L.IFGtri, bilateral STG, 

and R.PreCG (IS-NRSs collapsed across these regions; see Figure 6B), where these regions 

showed significant predictive powers of learning success as well as the emergent native-

similar neural representations in the late phase relative to the early phase.

The feedback-sensitive regions that significantly contribute to the learning predictions were 

identified in the frontostriatal network (Figure 6C, outcome prediction regions; also see 

Figure S10 for regions significantly contributing to the speed and IS-NRS predictions), 

which indicates that the neural sensitivity of feedback valence at the late phase of training 

within this network is a neuromarkers of tone-category learning successful. The most 

contributing regions in predicting the IS-NRSs were also within the frontostriatal network, 

including the L.IFGtri, left caudate, right angular gyrus, right IFGorb, right middle frontal 

gyrus, and right posterior cingulate cortex (permutation-based FDR-corrected q < 0.05). 

These results demonstrate that the frontostriatal network plays important role in facilitating 

the formation of native-similar neural representations.

Discussion

We employed a novel inter-subject neural representational similarity analysis and rigorous 

predictive modeling approach to examine the neural underpinnings of individual differences 

in non-native speech category learning success. We demonstrate that native-similar neural 

representational structure emerges during training and the degree of nativeness in neural 

representational structure in the left inferior frontal gyrus (IFG), left superior temporal gyrus 

(STG), and right precentral gyrus (PreCG) is robustly predictive of behavioral learning 

success. The emerging native-similar neural representations in successful learners are 

multidimensional and economical in encoding pitch-related phonetic/phonological category 

information. Further, individual differences in neural sensitivity to feedback valence within 

the frontostriatal network are highly predictive of individual differences in learning success 

and of the degree of nativeness of the emerging representations. These findings provide new 

insights into the neural representational mechanism underlying successful non-native speech 

category acquisition and the role of feedback in mediating individual differences in learning 

success.

Feng et al. Page 18

Neurobiol Lang (Camb). Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The nativeness in neural representational structure predicts sound-to-category learning 
success

It has been previously demonstrated that task-general and acoustic-invariant neural 

representations of Mandarin tone categories for native listeners are evidenced in the superior 

temporal areas and inferior parietal lobule using multivariate pattern classification (MVPC) 

(Feng, Gan, et al., 2018). While MVPC reveals category-level representations, this analytic 

method cannot capture the fine representational structures underlying the neural activation 

patterns. Here we used native listeners’ neural representational dissimilarity matrices 

(RDMs) as a native representation model to estimate learners’ neural representational 

structure and to assess the extent to which native-similar representations emerged during 

learning at the group level and in relation to individual differences in learning success. At 

the group level, the native-similar neural representational structure emerged in the late phase 

of training, similar to the emerging neural representations of tone categories and 

multidimensional pitch information (see Figure S5 in Supplementary Materials), which 

suggests that feedback-based training protocol could not only facilitate adult learners 

forming task-relevant categorical representations (Chandrasekaran, Koslov, et al., 2014; 

Feng et al., 2019) but also resulted in a representational structure that was increasingly 

similar to native listeners within just hundreds of training trials. This finding is consistent 

with the previous observation that neural representations of tone category emerge following 

training (Feng et al., 2019), and further reveals the native-similar nature of the 

representational structure underlying successful sound-to-category acquisition.

In addition to the emerging native-similar representations, a key finding is that greater neural 

similarity in representational structure between learners and native listeners (i.e., IS-NRS) 

predicts better learning performance. This finding suggests that IS-NRS is a robust neural 

representational indicator of sound-to-category learning success. The prediction results are 

validated by the rigorous predictive modeling approach with cross-validation, bootstrapping, 

and permutation procedures and are not explained by the contextual factors, response 

similarity, or individual differences in tone identification performance in the first block of 

training. The left IFG, STG, and right PreCG are crucial brain regions that reliably 

contributed to the learning-success prediction. These findings demonstrate that more 

successful learners reveal greater similarity to native listeners in their neural representations 

of Mandarin tone categories, even though the mechanisms underlying how the category 

representations are acquired might be fundamentally different (e.g., unsupervised vs. 

feedback-based learning) (Hernandez et al., 2005; Lim et al., 2019; MacWhinney, 1998).

The native listeners’ neural representational dissimilarity structure serves as an excellent 

tone-contrast model to quantitatively evaluate the degree of nativeness of neural 

representational patterns for the learners. The native listeners’ dissimilarity structure is also 

better in differentiating successful from less successful learners comparing to other 

representational models (i.e., CAT, MD, etc.). The IS-NRS prediction model yielded the best 

predictive powers in predicting how fast and how well learning could be achieved among 

other predefined pitch-related category models, reflecting on the predictive accuracy as well 

as the reliability of the predictive models revealed by the bootstrapping procedure (Figure 

3C). Previous studies have documented several neural indicators of speech learning success 
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(Deng et al., 2016; Golestani & Zatorre, 2009; Liu & Holt, 2011; Myers & Swan, 2012; 

Sheppard et al., 2012; Wong et al., 2011; Wong & Ettlinger, 2011; Wong et al., 2007; Zhang 

et al., 2009). However, these studies have largely focused on pre-training neural measures to 

predict learning outcomes or on examining the group-level neural changes in response to 

training. Here, we categorically focus on the neural representational dynamics during the 

process of learning and how neural plasticity contributes to individual differences in 

learning. Our results provide key insights into how successful learners form 

multidimensional and economical representations as a function of training with a goal of 

more efficient categorization.

The dimensionality of the emerging native-similar neural representational patterns

Theoretical models in L2 acquisition, largely in the domains of grammar and syntax, posit 

that the representational structure in L2 learners may be shallow and inefficient (Clahsen & 

Felser, 2006a, 2018). However, in term of non-native speech category learning, our results, 

demonstrate that the emerging neural representations of newly acquired speech categories 

for successful learners are not only significantly similar to those of native listeners but also 

multidimensional and cost-efficient, where the speech categories are encoded in a neural 

representational space with a moderate number of dimensions. Mathematically, a high-

dimensional representational space provides flexibility in encoding different categories but 

may come with a greater cost in terms of neural resources. In contrast, a low-dimensional 

space expends fewer resources but may not be capable of robustly differentiating 

behaviorally relevant categories. An optimal learning-induced representational mechanism 

would need to balance these two competing factors—maximizing behaviorally-relevant 

information in the signal with minimal resources to encode information (Gervain & Geffen, 

2019; Tang et al., 2019).

Using the single vector decomposition approach, we decomposed the neural patterns of 

speech sounds into independent dimensions and reconstructed the representational spaces 

parametrically with different numbers of dimensions to assess the relationship between 

dimensionality and predictive power as well as to estimate how many dimensions are needed 

to differentiate successful learners from less successful learners. Our results show that 

predictive powers change as a non-linear function of dimensionality, which reflects an 

interaction between learning success and dimensionality. Successful learners’ neural 

representations show increasingly native-similar as the number of dimensions increase, 

whereas less successful learners did not show such a relationship. Importantly, learning-

success predictions did not increase linearly with the number of dimensions increase (i.e., 

close to plateau at around five dimensions). This result suggests that the emerging neural 

representations in successful learners are cost-efficient, in which activation patterns encode 

the new categories with a limited number of dimensions that can maximally differentiate 

them, similar to native listeners (Gandour, 1983; Gandour & Harshman, 1978). Using other 

representational models’ RSA measures as predictors, we further demonstrate that 

multidimensional pitch information are critical constituents of the emerging native-similar 

neural representations for successful learners. Consistent with previous findings in native 

listeners (Chandrasekaran, Gandour, et al., 2007; Gandour & Harshman, 1978), we posited 

that pitch height and direction (i.e., contour) are important category-defining components 
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that represent tone-category distinctions in successful learners. Although prior behavioral 

studies have shown that other dimensions may also differentiate tones (Gandour & 

Harshman, 1978), we found that when we controlled for the variance of both F0 height and 

slope, the prediction is diminished. These results suggest that pitch height and direction are 

two critical components underlying both the native listeners’ and successful learners’ neural 

representations, in line with our original hypothesis.

The brain areas that significantly contributed to the learning-success prediction are within a 

large speech network involved in encoding pitch information for both native listeners and 

successful learners. These include the left IFG, left IPL, bilateral STG, left SMG, left MTG, 

right AG, and PreCG. Intriguingly, these brain areas encode the two pitch components 

differently for learners at the group-level. The bilateral STG, PostCG, PreCG, and the left 

IFG are dominated by F0 height, whereas much fewer regions are dominated by representing 

F0 slope (see Figure S5, Supplementary Materials). However, for native listeners, the above 

regions encode the multidimensional pitch information of the categorical representation. It is 

important to note that sound-to-category training only involved 240 trials. The mean 

accuracy for even the successful learners (n = 26) in the last training block (M = 70%) is 

therefore far from perfect that the native speakers performed (M = 97%). Therefore, the 

greater dominance of pitch height in learners relative to native listeners may because the 

learners are still novices. In line with a recent study demonstrating changes at early auditory 

processing stages with extensive multi-day sound-to-category training (Reetzke et al., 2018), 

we posit that a more extended training phase may yield better neural alignment of 

dimensional structure between native listeners and successful learners.

Neural sensitivity to feedback valence drives learning success and the emergence of 
native-similar neural representations

Our results demonstrate the significant similarity between native listeners and successful 

non-native learners in how tone-category-related information is represented in the brain. It is 

important to note that this significant neural similarity emerges following a relatively short 

period of sound-to-category training, which fundamentally differs from the mechanisms 

underlying category acquisition during infancy. Acquiring speech categories in adulthood is 

argued to require greater supervision and recent models (e.g., dual learning systems model) 

have highlighted the role of multiple corticostriatal systems in mediating adult speech 

learning (Chandrasekaran, Koslov, et al., 2014; Chandrasekaran, Yi, et al., 2014; Maddox & 

Chandrasekaran, 2014). Here, we provide supporting evidence from the perspective of 

individual differences in learning success that the neural sensitivity to feedback valence in 

the frontostriatal system is highly predictive of both behavioral learning success and the 

emerging native-similar neural representations. We posit that learners are reliant on feedback 

processing to update the internal representation, which could guide the formation of correct 

sound-to-category representations and efficient categorization behaviors. Individual 

differences in feedback processing and sensitivity are presumably critical factors associated 

with individual differences in learning outcomes. A previous study has identified the 

putamen, a core region in the striatum, dynamically coupling with the representational areas 

in the left STG when learners processed corrective feedbacks (Feng et al., 2019). In 

expanding this finding with a novel prediction analytic method, we find that individual 
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differences in neural feedback sensitivity in a more extended cortico-striatal network, 

including the striatum as well as lateral and medial frontal, precentral gyrus, inferior parietal 

cortex, and hippocampus areas robustly contributed to the prediction of learning success and 

the degree of native-similar representations. These findings suggest that feedback 

sensitivities in the two putative category learning systems (i.e., reflective and reflexive 

systems) are critical neural sources mediating individual differences in speech category 

learning success, at least during the transition learning stage (from novice to experienced 

phase).

The neural sensitivity to feedback valence is prominent in the late training phase relative to 

the early phase. Similarly, the representation/learning-success predictions (based on 

feedback-valence sensitivity) are more powerful for the late relative to the early training 

phase. We posit that trial-by-trial corrective feedback information facilitates rapidly updating 

learners’ internal representations to enhance categorization success. More successful and 

faster learners likely leverage the feedback better, leading to the more native-similar 

multidimensional representations of the acquired speech categories. During sound-to-

category learning, interactions between the striatum, auditory cortex, and frontoparietal 

regions might enable the integration of perceptual representation and feedback valence, 

mediating the shift from novice to skilled behavioral performance (Reetzke et al., 2018).

Learning non-native novel phonemic contrasts is a key step towards acquiring new words in 

a foreign language. Previous studies have demonstrated that both learning non-native 

phonemic contrasts and learning new words rely on the feedback/reward-sensitive striatal 

regions (Feng et al., 2019; Lim et al., 2019; Ripolles et al., 2016; Ripolles et al., 2014) and 

interactions within corticocortical and corticostriatal networks (Li et al., 2014; Lopez-

Barroso et al., 2013; Shtyrov, 2012). The striatal activations are associated with domain-

general reward processes, where a reward signal (e.g., gaining money or receiving feedback) 

may facilitate the formation of new memories in general (Adcock et al., 2006; Wolosin et al., 

2012) and drive the acquisition of different language components (beyond phonetic/

phonological learning). The interaction of the striatum and cortical regions have been 

proposed to be a neural driving force for the formation of cortical representations in 

language learning (Feng et al., 2019; Ripolles et al., 2014). Here, we further demonstrate 

that individual differences in learning success and the robustness of the emerging native-

similar neural representations are both associated with the feedback sensitivity in the 

corticostriatal network. This corticostriatal interaction mechanism may not be restricted to 

the learning of novel non-native phonemic contrasts but also could be used in other aspects 

of language learning, e.g., learning new words and grammar. Further studies need to be 

conducted across different domains of language learning to directly address this question.

To what extent can our results generalize to typical language learning contexts? Prior studies 

have trained participants on a sound-to-meaning training paradigm that involves learning 

novel words as well as tone categories (Deng et al., 2016; Wong et al., 2007). Similar to the 

current study, large individual differences underlie learning performance in this learning 

context as well. Interestingly, during the initial word learning, learners often make lexical 

errors, but by the end of the training, most errors are in disambiguating tonal categories. 

Indeed, a prior study demonstrated that learning success in such a paradigm may be driven 
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by poorer representations of tone category information in subcortical auditory regions 

(Chandrasekaran et al., 2012). Thus, representational plasticity may underlie individual 

differences in learning to map pitch information irrespective of learning context. However, it 

is also possible that in a more ecological word learning context, there would be a need for 

greater coupling between the lexical-semantic network, superior temporal gyrus, as well as 

the reward-related corticostriatal pathways. In this context, individual differences in learning 

success may depend on emerging representations of tone categories as well as lexical-

semantic representations.

Conclusion

Using the multivariate inter-subject representational similarity analysis and predictive 

modeling approaches, we deconstructed the neural sources of inter-individual differences in 

learning success during the process of learning to map non-native speech sounds into 

discrete categories. Successful learners can build robust and detailed speech representations 

that are similar to those in native listeners. The greater similarity between non-native 

learners and native listeners in neural representations of tone-category-related pitch 

information is associated with more rapid learning and better learning outcomes. Neural 

representations in successful learners are encoded in a cost-efficient manner: the 

representational space is multidimensional but with a limited number of dimensions that 

maximize the categorization of newly acquired speech categories. The emerging native-

similar representations in more successful learners are associated with neural sensitivity to 

feedback valence in a distributed frontostriatal network. We provide new evidence and 

insights into the neural mechanisms underlying the successful acquisition of non-native 

speech categories in adulthood and into the scaffolding for the development of 

individualized speech training protocols that maximize learning outcomes with effective 

feedback.
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Figure 1. 
behavioral tone-category training procedure, learning performance, and response-pattern 

modeling. A, feedback-based sound-to-category training procedure was used during MRI 

scanning for the learners. The native Mandarin listeners performed the same tone 

categorization task but without feedback (see Figure S1 for the experimental procedure). B, 

line graphs showing the group-level and individual learning curves across six training 

blocks. Early, the early phase of training; Late, the late phase. C, learning speed (LS) was 

estimated by fitting each learner’s block-by-block accuracies with a power function. See 

Methods for the detailed learning curve modeling procedure. D, six predefined 

representational dissimilarity matrices (RDMs) were constructed for modeling learners’ 

categorization response patterns using the behavioral representational similarity analysis 

(bRSA): Native nRDM = native listeners’ neural RDM derived from a predefined brain 

mask; CAT = binary tone-category RDM; MD = multidimensional pitch RDM; F0 height = 

pitch height RDM; F0 slope = pitch direction RDM; Syllable = binary syllable-identity 

RDM; See Methods for the detailed RDM construction procedure. E, the bRSA reveals that 

native-similar tone-category-related information emerges following training, whereas task-

unrelated segmental information decreases. Error bar: s.e.m. F, the model fits of the native 

nRDM (also other tone-category-related RDMs) are highly correlated with the learning 

outcome (red dots) and speed (not shown). In contrast, an inverse relationship was found 

between the Syllable model fits and learning outcome (pink dots).
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Figure 2. 
inter-subject neural representational similarity (IS-NRS) analysis, predictive modeling 

procedure, and candidate representation models for RSA and prediction analysis. A, 

graphical illustration of the calculation of IS-NRS. Neural activation patterns were extracted 

from predefined ROIs based on the AAL2 atlas for both learners and native listeners. The 

neural RDMs (nRDMs) were calculated separately for each group. Each learner’s nRDM 

was compared with every native listener’s nRDM for each ROI. The IS-NRSs were then 

generated and used as predictive features to predict learning success (i.e., outcome and 

speed). B, the 10-fold cross-validation (CV) procedure for model construction and 

validation. All learners were split into 10 folds where 90% of the learners’ data were used to 

train a GLM/SVR model and then the trained model was used to predict the left-over 10% of 

the learners and repeated 10 times. Predictive powers were estimated by calculating 

correlations between the predicted and observed learning performance. Permutation and 

bootstrapping procedures were used to determine the statistical significance and stability of 

the predictive powers. See Figure S4 for the overall data analysis pipeline. C, candidate 

representational models for the generation of neural representational predictive features. To 

compare the predictive powers of IS-NRS with those of other representational measures, the 

same prediction analyses were conducted with the predictors derived from the other five 

RDMs (i.e., CAT, MD, F0 height, F0 slope, and Syl).

Feng et al. Page 30

Neurobiol Lang (Camb). Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
predictive powers of the IS-NRS and other five model-based representational predictors. A, 

predictive powers were estimated based on the linear correlations between the predicted and 

observed learning scores. A representative scatter plot with linear fits showed strong 

predictive power in the late training phase instead of the early. B, IS-NRS predictive power 

distributions for the outcome and speed predictions for the early and late phases of training, 

respectively. Bootstrapping-based distributions were compared with the permutation-based 

(i.e., Prem) distributions to determine the statistical significance of the prediction models. 

Models only in the late phase revealed significant effects for both outcome and speed 

predictions. C, the IS-NRS showed more predictive power and prediction stability compared 

with the other five representational predictors. The dashed line indicates the 95th percentile 

of a permutation-based distribution. Representational predictors: NRS, native listeners’ 

regional neural model, i.e., IS-NRS; CAT, tone-category model; FH, F0 height; FS, F0 slope; 

MD, multidimensional pitch model; Syl, syllable-identity model; permutation-based 

significance test: **, P < 0.01; *, P < 0.05; n.s., non-significant.
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Figure 4. 
The brain regions that significantly contributed to the predictive models and regions that 

showed significant emerging native-similar neural representations. A, regions significantly 

contributing to outcome and speed predictions in the late phase of training. Permutation-

based FDR-corrected q = 0.05. ROI abbreviation: L.IFGtri, triangular part of left inferior 

frontal gyrus; L.IPL, left inferior parietal lobe; L.MTG, left middle temporal gyrus; STG, 

superior temporal gyrus; SMG, supramarginal gyrus; R.AG, right angular gyrus; R.PreCG, 

right precentral gyrus; L, left hemisphere; R, right hemisphere. B, brain regions that showed 

emerging native-similar neural representations in the late phase of training. FDR-corrected q 
= 0.05.
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Figure 5. 
moderate-to-high dimensionality of learners’ native-similar neural representations best 

predicts individual learning success. A, the IS-NRS was recalculated with a dimensional 

decomposition procedure in which learners’ activation patterns were decomposed into 

principal components (PCs). We constructed learners’ nRDMs with different numbers of 

PCs (from 1 to p, p = number of PC). The non-native learners’ dimension-constrained 

nRDMs were then correlated with native nRDM individually to calculate IS-NRS. These IS-

NRSs were used to predict learning success with different numbers of PCs. B, predictive 

power reached a plateau with around five PCs (the black arrow). Predictive powers increased 

as a non-linear function of dimensionality. **, P < 0.01. C, group differences in IS-NRS 

across training phases. Learners were split into two groups, successful and less successful, 

based on the median of their outcomes. In the late phase of training, successful learners 

show more robust native-similar neural representations (i.e., IS-NRS) compared to less-

successful learners. This group difference was more salient in the moderate-to-high 

dimensional space than that in the low-dimensional space.
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Figure 6. 
Neural sensitivity to feedback valence predicts individual learning success and the degree of 

nativeness in neural representational structure in the late phase of training. A, Feedback-

valence sensitivity brain maps for both early and late phases of training. Feedback-valence 

sensitivity was measured by the ROI-based multivariate feedback-type classification 

analysis. The group-level brain maps were thresholded at FDR-corrected q = 0.05. B, a 

violin graph shows the prediction distributions of predicting speed and outcome as well as 

the IS-NRS of L.IFGtri, bilateral STG, and R.PreCG. Neural feedback sensitivity in the late 

phase significantly predicts behavioral learning success and the robustness of learners’ 

native-similar neural representations (i.e., IS-NRS). The dashed line indicates the 95th 

percentile of a permutation-based distribution. C, corticostriatal regions significantly 

contributed to the learning-outcome prediction mapping onto a brain template. The color bar 

indicates the significance (vs. permutation distributions) of an ROI in correlating the neural 

feedback sensitivity with the learning outcome, derived from the feature selection and 

permutation procedures. Permutation-based FDR-corrected q = 0.05. ROI abbreviation: 

Hipp, hippocampus; L, left hemisphere; R, right hemisphere.
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