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a b s t r a c t

Speech is a complex cognitive process that begins with conceptualization, proceeds to

word-level processing, and ends with articulation. Neural decoding of speech (i.e., using

neural activity to decode the content of language production) has been mostly conducted

by mapping neural activities in the later part of language production (i.e., phonological and

motor processing). Here we show that neural decoding of speech can also be performed by

mapping neural activities associated with semantic representations that occur in the early

part of language production. Furthermore, we demonstrated that the classifier trained

using the neural activity patterns of language perception was able to decode the content of

language production, indicating a cross-modality similarity between language perception

and language production in semantic representations.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Speech is a complex cognitive process. The sequences of

language production are generally assumed to include

conceptualization, word-level processing (lemma),

phonological-level processing, and articulation (Roelofs

et al., 1998; Hickok, 2012; Levelt et al., 1999; Vigliocco et al.,

1999; Levelt, 1992, 1993; Kempen & Huijbers, 1983). After an

idea is formulated as a speech goal (conceptualization), the
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idea is mapped to a word with corresponding meaning

(word-level or lemma-level processing). Following word-

level processing, the phonological information is then pre-

pared for articulation.

Studies on the neural decoding of speech (Anumanchipalli

et al., 2019; Dash et al., 2020, 2021; Herff et al., 2015; Martin

et al., 2014; Ramsey et al., 2018; Chakrabarti et al., 2015) have

mostly focused on mapping the neural representations of the

later part of the language production process. For instance, in
.edu.tw (P.-J. Hsieh).
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Herff et al. (2015), it is shown that the recorded electro-

corticography (ECoG) signals produced while participants

were speaking specific phrases can be successfully mapped to

phonemes to predict language production. The success of this

line of research suggests that human brains encode phonetic

information during language production.

However, speech begins with conceptualization and word-

level processing (Wiese, 1984). To meet a speech goal, the

primary step for language production should be to retrieve the

meaning of the corresponding word from the mental lexicon.

On this view, semantic information is critical and directly

encoded during language production. To directly test this

hypothesis, we examined whether neural activities during

language production are systematically associated with se-

mantic representations.

This research strategy (i.e., mapping neural representa-

tions to semantic representations) has been widely used in

decoding human perception (Anderson et al., 2017; Bonner &

Epstein, 2021; Huth et al., 2016; Mitchell et al., 2008; Nishida&

Nishimoto, 2018; Pereira et al., 2013, 2018; Schrimpf et al.,

2021; Wang et al., 2020). For example, Pereira et al. (2018)

first constructed a semantic representation database by

using a natural language processing algorithm and success-

fully decoded the perceptual contents of brain activity.

Bonner and Epstein (2021) used a similar research strategy to

map low-dimensional statistical representations onto voxel-

wise fMRI responses during object viewing and discovered

that in the parahippocampal place area, cortical responses to

specific objects could be predicted by their visual statistical

contexts.

Based on these studies, we decided to adopt this well-

established decoding method to test our hypothesis. Specif-

ically, we attempted to 1) decode language perception by

employing the same algorithm of Pereira et al. (2018) but with

Mandarin stimuli on native Mandarin users; and 2) decode

language production by using the same decoding algorithm.

We separately trained two classifiers (i.e., a perception

classifier and a production classifier) with language percep-

tion data and language production data. We expected that

both the perception classifier and the production classifier

could successfully decode unlearned contents from brain ac-

tivity. Furthermore, to examine whether neural representa-

tions were systemically associated with semantic

representations during both language perception and lan-

guage production, analyses were conducted to decode se-

mantic content across classifiers (i.e., decoding the content of

language perception with the production classifier and vice

versa). If the neural activities during language perception and

language production duringword processing were similar, the

content of language perception should be decodable by the

production classifier and vice versa.
2. Methods

2.1. Subjects

Based on three related studies that reported 100% success rate

in prediction (Bonner & Epstein, 2021; Mitchell et al., 2008;

Pereira et al., 2018), we performed the proportion sign test
(binominal test) with the null hypothesized proportion as 50%

success rate and type one error rate as .05. One-tailed G*Power

(Faul et al., 2009) showed that there is a 95% chance of

correctly rejecting the null hypothesis that the sample pro-

portion is equivalent to .5 (50%) with 5 participants.

A total of eight native Mandarin speakers were recruited

for this study. All subjects (4 men and 4 women; mean

age ¼ 27.8; SD ¼ 7.05) reported no mental or language-related

disabilities. The study protocol was approved by the Ethics

Committee of National Taiwan University, Taiwan. All the

subjects signed informed consent forms and were asked to

undergo five MRI sessions (1 h per session). Three additional

prospective subjects were not included in the study because of

excessive head motion and somnolence during the

experiment.

2.2. Materials

2.2.1. Semantic vector and representative word selection
To model the semantic representations of Chinese words, we

adopted the natural-language processing algorithm word2vec

(Zhang et al., 2021; Mikolov et al., 2013a, 2013b). This algorithm

was designed to represent words based on textual analysis,

with the underlying assumption that words with similar

meanings appear in similar contexts (Harris, 1954). The

word2vec (skip-gram architecture) introduces a neural

network to learn how a given target word predicts other

contextual words accompanying the target word and gives

each target word a vector (also called vector space or semantic

vector) to represent this unique property/semantic relation-

ship in the text. If two words have similar contexts (meaning

that they are semantically similar according to the assump-

tion), the distance between the vector spaces should be small.

On the contrary, if two words are not related, the distance

between the vector spaces should be wide. In short, by

analyzing a big corpus of text, words can be represented by

different vectors.

A text corpus from a Taiwan Wikipedia dump on April 05,

2021, was downloaded as the material. Since Chinese words

cannot be directly segmented by space, a python package

named jieba (https://github.com/fxsjy/jieba) was used to

segment the text corpus into meaningful word chunks. The

segmentation was based on the predefined dictionary to find

the most possible word combinations. After segmentation,

the Python package named gensim (Rehurek & Sojka, 2011;

https://radimrehurek.com/gensim/index.html) was used to

learn the representation of the words. The Skip-gram model

was selected, and the dimension of the space vector was 300

in accordance with previous research (Bfaroni et al., 2014;

Hollis, 2017; Landauer & Dumais, 1997; Mandera et al., 2017;

Pereira et al., 2013). The window size was 5 (as default), and

the words with a frequency lower than 10 were discarded

(min_count ¼ 10). A custom Mandarin Chinese word-

embedding model was then constructed accordingly.

Within the custom word-embedding model was a total of

571,485 words. In addition, each word's frequency of occur-

rence in the corpus was calculated, and the 30,000 most

frequently used words from the custom word-embedding

model were selected from the word database. Based on the

semantic vectors of these 30,000 words, a k-means analysis

https://github.com/fxsjy/jieba
https://radimrehurek.com/gensim/index.html
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was performed to identify the 200 most representative cate-

gories on the basis of which to create a universal classifier

(Pereira et al., 2018). Categories with unrecognizable words,

foreign characters, or proper nouns were removed. Upon

completion of the process, only 119 categories remained

(Fig. 1).
Fig. 1 e Visualization of semantic space. Seven selected categori

two dimensions for visualization. The target words for each gro

Stimuli translated in English (B) Stimuli in Mandarin.
A singlewordwithin each category needed to be selected to

represent the corresponding category. Two steps were per-

formed to determine the representative word of each cate-

gory. 1) First, distances from the centroid of the specific

category to eachwordwithin a categorywere calculated. After

ranking the distance in ascending order, the top 20 words
es of 300-dimensional semantic space were downgraded to

up were marked in red and the related words in black. (A)

https://doi.org/10.1016/j.cortex.2022.05.018
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nearest to the centroid of a category were selected. 2) Second,

among these top 20 words, the order was resorted and

reranked according to their frequency until the highest-

ranking word with the highest frequency of occurrence was

determined. The highest-ranking word with the highest fre-

quency of occurrence was then used as the representative

word. Moreover, all the highest-ranking words weremanually

checked by the investigators. If the highest-ranking word is

not a superordinate word among other words to represent the

category, the selection for the representative word (or target

word) would move to the next word until the ideal (i.e., su-

perior) word was found. For example, according to the fre-

quency ranking, the highest-ranking word in category 27 is

“red”. And the fourth word is “color”. Since color is superor-

dinate than “red”, we changed the representative word from

the category to the “color” instead of “red”. The representative

words were used as the target words during the fMRI session

in which subjects had to view or speak (fMRI paradigm).

2.2.2. Experimental stimuli
One representative word for each category was selected as the

target word for the fMRI session. Each word was presented in

two types with additional accompanying information; one

was the sentence type, and the other was the picture-with-

text type. The presentation methods were motivated from

Pereira et al. (2018) and Bonner and Epstein (2021).

For the sentence type, a target word and one of the top 20

nearest-to-the-centroid words (excluding the target word and

chosen arbitrarily) from the corresponding category (without

the target words) were used to create a sentence. A total of five

sentences were created for each semantic category. In addi-

tion, the target wordswere highlighted in bold and underlined

(Fig. 2). For the picture-with-text type, five pictures related to

the target word were selected from the Pexels webpage

(https://www.pexels.com/zh-tw/). In addition, the top 4 words

obtained from the 20 nearest-to-the-centroid words after

frequency ranking (excluding the target words) were pre-

sented along with one picture and the target word (the target

word was at the center in a larger font, with the four related

words above it; Fig. 2). In brief, subjects were presented with

five sentence-type stimuli and five picture-with-text stimuli to

ensure that they could grasp the concepts. These 10 stimuli for

a category (five sentences þ five pictures-with-text) were

shown only once during the experiment. However, the

concept of each target word was repeated 10 times.

2.3. fMRI paradigm

Two types of cognition tasks (perception vs. production) were

performed by subjects, and each task had two different

stimulus presentation methods (sentence vs. picture-with-

text), yielding four different fMRI conditions in total.

We mainly followed the experimental design of Pereira

et al. (2018). In the perceptionepicture-with-text condition, a

reminder frame (with the text 'reading') would first prompt the

subject to perform a “perception” task in the current fMRI run.

Subjects were asked to view the stimulus as it was displayed

for 2 s and then think about the meaning of the target word

with the accompanying information. The thinking frame las-

ted for 2 s and was followed by a 2-s fixation frame. The
perceptionesentence condition was identical to the percep-

tionepicture-with-text condition, except the stimuli were of

the sentence type.

In the productionepicture-with-text condition, a reminder

frame (with the text 'speaking') cued subjects to perform a

“production” task in the current fMRI run. Subjectswere asked

to view as well as think of the stimulus briefly (the stimuli

were each displayed for 2 s) and then say aloud the target

word. The speaking frame lasted for 2 s and was followed by a

2-s fixation frame. The production-sentence condition was

identical to the productionepicture-with-text condition (i.e.,

speaking out the target word only), except the stimuli were of

the sentence type.

A total of 119 words were separated into two sets (Set1 and

Set2). Set1 always contained 60 trials, whereas Set2 contained

59 trials. As a result, two runs were required to go through all

the stimuli for each condition. Additionally, each run con-

tained a 10-s fixation frame at the end and a 10-s break frame

after 30 trials were completed. Therefore, one run required

either 6 min and 40 s (for Set1 with 60 trials) or 6 min and 34 s

(for Set2 with 59 trials).

Subjects were required to complete five MRI sessions.

Within one MRI session, subjects would go through the four

conditions, which were perceptionepicture-with-text, pro-

ductionepicture-with-text, perceptionesentence, pro-

ductionesentence. Two runs were required to complete all

stimuli, and thus an MRI session included a total of eight MRI

runs (Fig. 2). All conditions were repeated five times.

2.4. fMRI data acquisition

All MRI data were acquired using a 3 T scanner with a 32-

channel head coil (MAGNETOM Skyra 3 T). Functional MRI

runs were acquired using a gradient echo-planar imaging

sequence (field of view¼ 220� 220mm; TR¼ 2 sec; TE¼ 24ms;

flip angle ¼ 90�; slice thickness ¼ 4 mm; acquisition

matrix ¼ 64 � 64). Anatomical image was acquired using an

MPRAGE sequence (field needs of view ¼ 256 � 256 mm;

TR ¼ 2 sec; TE ¼ 2.98 ms; flip angle ¼ 9�; slice

thickness ¼ 1 mm; acquisition matrix ¼ 256 � 256).

2.5. fMRI data analysis

2.5.1. Data preprocessing
All MRI data were analyzed using SPM 12 (Penny et al., 2011).

After slice-timing and realignment correction, the individual

functional data were coregistered with their structural data,

resampled into 2-mm isotropic voxels, andwrapped in theMNI

template. The normalized data were smoothed with an 8-mm

full-width half-maximum Gaussian kernel. A general linear

model design for the four conditions was constructed inde-

pendently for each subject to acquire the 119 target-word-

related parameter estimations. These target word parameter

estimations were then averaged across modalities

(sentenceþ picture-with-text) and served as decoding features.

2.5.2. Decoding methodology
We followed the decoding methodology in the work of Pereira

et al. (2018). In brief, classifiers were expected to generate

correct or similar semantic vectors given specific brain image

https://www.pexels.com/zh-tw/
https://doi.org/10.1016/j.cortex.2022.05.018
https://doi.org/10.1016/j.cortex.2022.05.018


Fig. 2 e Presentation of the fMRI experimental design. (A) One MRI session consisted of four experimental conditions,

namely perceptionepicture-with-text, productionepicture-with-text, perceptionesentence, and productionesentence. Each

condition contained two sets. (B) Within a single MRI run, a reminder frame appeared first followed by the fixation frame,

the stimuli, and then the task frame (each frame lasted for 2 s). (C) Display of picture-with-text type (upper image) stimuli

and sentence type (lower image) stimuli.
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data. Classifiers were thus expected to learn an association

between brain activity and semantic vectors. Ridge regression

was used to fulfill the goal.

During a model training session, given a series of brain

activity matrix X (training set) and the corresponding se-

mantic vectors Z, we expected to acquire a string of regression

coefficients b and constant b0 thatminimized k Xbþ b0 � z k 2
2

þl k b k 2
2
for each column of the semantic vectors Z. The term

l was the regularization parameter for each dimension using

generalized cross-validation within the training set. Each

voxel as well as each semantic vector dimension was

normalized across training stimuli.

The training of these language classifiers (i.e., the produc-

tion classifiers and the perception classifiers) was based on

leave-10%-stimuli-out cross-validation. Hence, in each fold,

brain images of 11 or 12 words were left out for later classifier
validation. The rest of the brain images (107 or 108) served as a

training data set for learning the regression parameters.

Moreover, in each fold, a voxel selection procedure was

performed before classifier training. This procedure aimed to

reduce the size of the training data to 5000 voxels per image.

Voxels containing information concerning text-derived se-

mantic vectors for training set images were selected. The

vowel selection procedure mainly followed the method from

Pereira et al. (2018). In short, leave-10%-stimuli-out cross-

validation was performed within the training sets for voxel

selection. Ridge regression models were used to learn and

later predict each semantic dimension from the image data of

each voxel. Because the image data were smoothed before-

hand, in this step, we chose not to include the information

from the adjacent voxels during trainingdthis approach

slightly differed from that in Pereira et al. (2018). Moreover, to

identify the 5000 best informative voxels, cosine similarity

https://doi.org/10.1016/j.cortex.2022.05.018
https://doi.org/10.1016/j.cortex.2022.05.018
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was considered in calculating the similarity between the

predicted semantic vector and the real semantic vector

(Mitchell et al., 2008). Cosine similarity entails computing the

dot product of the two given vectors divided by the length of

the vectors. Higher cosine similarity indicates higher infor-

mativeness. Thus, the top 5000 voxels sorted according to

high-to-low cosine similarity were selected and saved as a

map for language classifier training.

Furthermore, in this study, two decoding directions were

used. The first was the basic direction, which stated that the

classifier was trained and validated on the image data from

the same MRI condition (for example, the decoding of

perception data by perception classifiers). The second di-

rection was cross decoding, in which the image data for

training and validation came from different data streams

(i.e., decoding perception data by production classifier and

vice versa).
2.5.3. Statistical testing for decoding performance
To evaluate the performance of our classifiers, the rank ac-

curacy score (Pereira et al., 2018) was calculated. The simi-

larity between the predicted semantic vectors and a set of

candidate semantic vectors (n ¼ 119) were compared. The

similarity values were sorted from highest to lowest to

determine the rank score of the correct stimuli. This rank

score was then normalized (1 - rank �1
119�1 ) to the range [0,1] as the

rank accuracy score. Higher rank accuracy scores indicated

more favorable decoding performance. The average rank ac-

curacy score for all decoded vectors represented the perfor-

mance of the classifier (Fig. 3).

To examine the statistical significance of the performance

of the classifiers, we subsequently conducted permutation

tests (Bonner& Epstein, 2021). The labels of the correct stimuli

were randomly permutated within each cross-validation fold,

and then the permutated rank accuracy was determined. We

repeated the permutation 2000 times and reported the p value

for the performance of the classifiers based on the permutated

rank accuracy scores. Because all the language classifiers were

independent entities, we reported the language classifier as

successful if the p value was smaller than .05. Finally, we

performed a binomial test to calculate the significance of
Fig. 3 e Decoding schematic. During the training session, 90% of

to train the language classifier. To reduce the data dimensions

training based on the training data. The remaining 10% of brain

for testing, which were compared to real semantic vectors for a
successful decoding times. The probability of a successful

outcome was assumed to be .5.
3. Results

3.1. Performance of perception decoding with perception
classifier

All the perception classifiers were successfully trained and

were able to decode the unlearned perception content on the

basis of brain maps across the eight subjects (Fig. 4A). The

rank accuracy scores and corresponding p values for subject

01 to subject 08 were .5574 (p ¼ .0005), .5032 (p ¼ .0005), .4738

(p ¼ .0215), .4763 (p ¼ .0085), .5232 (p ¼ .0005), .6208 (p ¼ .0005),

.521(p¼ .0005), and .5199 (p¼ .0005), respectively (Table 1). The

result of the binomial test for successful classification

(p ¼ .004) again corroborated that the development of the

perception classifier was successful.

3.2. Performance of production decoding with
production classifier

Seven out of eight production classifiers were successfully

trained (Fig. 4B). The rank accuracy scores and corresponding

p values for subject 01 to subject 08 were: .5678 (p ¼ .0005),

.4662 (p ¼ .016), .4189 (p ¼ .6407), .4999 (p ¼ .0005), .487

(p ¼ .0015), .5051 (p ¼ .0005), .4949 (p ¼ .001), and .4609

(p ¼ .005), respectively (Table 1). Although one production

classifier was unable to decode the untrained language pro-

duction content, the result of the binomial test (p ¼ .004) still

corroborated the successful development of the production

classifier.

3.3. Performance of production decoding with perception
classifier

To investigate the similarity of neural representations between

language perception and language production, we tested the

trained perception classifiers for their generalizability to brain

maps acquired under production conditions. We found that all

unlearned production content could be decoded by the
brain maps and corresponding semantic vectors were used

, voxel selection was firstly performed before classifier

maps were used to acquire the predicted semantic vectors

range of stimuli.

https://doi.org/10.1016/j.cortex.2022.05.018
https://doi.org/10.1016/j.cortex.2022.05.018


Fig. 4 e Decoding performance. The violin plots show the distribution of the permutation results. The black lines above the

violin plots indicate the real rank accuracy scores of the classifiers. (A) Performance of perception decoding with perception

classifier. (B) Performance of production decoding with the production classifier. (C) Performance of production decoding

with the perception classifier. (D) Performance of perception decoding with the production classifier. The results were

ranked and displayed from the highest to lowest performance. *p < .05, **p < .001 uncorrected, one-sided permutation test.

Table 1 e The performance of the perception classifiers and production classifiers across subjects.

Subject
ID

Performance of perception
decoding with perception

classifier

Performance of production
decoding with production

classifier

Performance of production
decoding with perception

classifier

Performance of perception
decoding with production

classifier

Rank accuracy
scores

p-
values

Rank accuracy
scores

p-
values

Rank accuracy
scores

p-
values

Rank accuracy
scores

p-
values

Subject 01 .5574 .0005* .5678 .0005* .5245 .0005* .517 .0005*

Subject 02 .5032 .0005* .4662 .016* .517 .0005* .4994 .032*

Subject 03 .4738 .0215* .4189 .6407 .4754 .0235* .4617 .0535

Subject 04 .4763 .0085* .4999 .0005* .4734 .036* .502 .01*

Subject 05 .5232 .0005* .487 .0015* .4632 .0065* .4798 .2199

Subject 06 .6208 .0005* .5051 .0005* .5362 .0005* .6027 .0005*

Subject 07 .521 .0005* .4949 .001* .5139 .0005* .5446 .0005*

Subject 08 .5199 .0005* .4609 .005* .4857 .001* .4829 .1339

*p < .05.
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perception classifiers (Fig. 4C). The rank accuracy scores and

corresponding p values for subject 01 to subject 08 were .5245

(p ¼ .0005), .517 (p ¼ .0005), .4754 (p ¼ .0235), .4734 (p ¼ .036),

.4632 (p ¼ .0065), .5362 (p ¼ .0005), .5139 (p ¼ .0005), and .4857

(p ¼ .001), respectively (Table 1). The binomial test for suc-

cessful classification further confirmed the robustness of the

generalizability of perception classifiers (p ¼ .004).
3.4. Performance of perception decoding with production
classifier

We also examined the generalizability of trained production

classifiers on unlearned brain maps acquired under percep-

tion conditions. Five out of eight classifiers could be general-

ized to perception (Fig. 4D). The rank accuracy scores and

https://doi.org/10.1016/j.cortex.2022.05.018
https://doi.org/10.1016/j.cortex.2022.05.018
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corresponding p values for subject 01 to subject 08 were .517

(p¼ .0005), .4994 (p¼ .032), .4617 (p¼ .0535), .502 (p¼ .01), .4798

(p ¼ .2199), .6027 (p ¼ .0005), .5446 (p ¼ .0005), and .4829

(p¼ .1339), respectively (Table 1). The binomial test for success

classification was not statistically significant (p ¼ .219).

Lastly, the 5000 most informative voxels for training clas-

sifiers were combined across the eight subjects (Fig. 5A and B).

The value inside a voxel represented the selection probability

for classifier development.
4. Discussion

To develop a universal speech decoder and investigate the

neural basis of linguistic concepts during language perception

and production, we mapped neural activities with semantic

representations. Our results demonstrated that language

production was decodable on the basis of corresponding

neural data, suggesting that neural activities during language

production were systematically associated with semantic

representations. Moreover, we succeeded in decoding the

untrained language production content with the perception

classifiers.

The success of developing a language production classi-

fier by mapping between semantic representations and

neural activity are strong evidence for the speech model that

proposes mental representing/processing of meaning before

articulation (Roelofs et al., 1998; Hickok, 2012; Levelt et al.,

1999; Vigliocco et al., 1999; Levelt, 1992, 1993; Kempen &

Huijbers, 1983). Compared to motion-based and phonetic

based classifiers that utilize neural activity from frontal and

temporal lobes (i.e., motor and auditory cortex) while sub-

jects spoke with corresponding phone representation (pho-

netic-based) or articulatory kinematic features (motion-

based), our result extended the methodology to incorporate

semantic representations in neural decoding of speech

(Anumanchipalli et al., 2019; Herff et al., 2015; Martin et al.,

2014; Ramsey et al., 2018; Chakrabarti et al., 2015; Sharon

et al., 2020). Moreover, such a semantic-based classifier is

better than motion-based and phonetic based classifiers

under certain conditions. For example, the phonological
Fig. 5 e Distribution of the 5000 most informative voxels acros

perception classifier. (B) Most informative voxels for training th
level and motion level can fail during language production

and cause the tip-of-the-tongue phenomenon (Vigliocco

et al., 1998), apraxia of speech (Ogar et al., 2005) as well as

dysarthria (Duffy, 2013). Only a semantic-based classifier

targeting pre-articulation/utterance information can over-

come the aforementioned obstacles.

Cross-decoding analyseswere performed to investigate the

similarity between the cognitive processes underlying lan-

guage perception and language production. The perception

classifiers in each of our subjects could successfully decode

the subject's own language production content. This result

suggests that language perception and production share a

similar neural representation of semantics. Notably, this

finding leads to a new question: whether humans share

similar neural representations of semantics even across lan-

guages. Neural representations for higher semantic levels (i.e.,

narrative comprehension) overlap across languages.

Dehghani et al. (2017) trained their classifier with neural ac-

tivities and the high-semantic-level vector (i.e., the story

vector) fromother languages and reported above-chance-level

decoding accuracy. For the lower semantic level (i.e., the word

level), Van de Putte et al. (2017) and Correia et al. (2014) re-

ported neural overlap in the semantic representations of

bilingual individuals. However, due to the specificity of the

bilingual participants (Riehl, 2010) and the experimental de-

signs, these results can only support weak conclusions about

cross-language neural representations. Future research is

required to address this question.

By contrast, the generalizability of the trained production

classifiers to unlearned brain maps acquired under language

perception conditions was less successful. This result might

be because language production entails not only semantic

representations but also representations of articulation

(Anumanchipalli et al., 2019) and phonetic representations

(Herff et al., 2015).

Apart from the generalizability acrossmodalities, the other

intriguing issue is whether the semantic representations can

be generalized across participants. By computing the selection

possibility for the 5000 most informative voxels across sub-

jects, our result showed that to some extent, semantic rep-

resentations were overlapped across subjects. Yet, not
s subjects. (A) Most informative voxels for training the

e production classifier.

https://doi.org/10.1016/j.cortex.2022.05.018
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surprisingly, there are individual differences that limit

generalizability (Pereira et al., 2018; Wang et al., 2020). Future

work could address this point to develop a more universal

language classifier.

The successful decoding of the unlearned Mandarin words

with the perception classifier confirmed the robustness of the

decoding procedure proposed by Pereira et al. (2018). This

result not only indicated the cross-language generalizability

of the decoding method but also provided evidence for the

plausible neural basis of the mental representation of lin-

guistic concepts. Overall, our work demonstrates the potential

for applying fMRI as a universal speech decoder for patients

with speech impairment (Ho et al., 1998; Bruno et al., 2011;

Ylvisaker, 1993; Baldo, Klostermann, & Dronkers, 2008). This

decoder only requires brain data during perception and does

not require motion experience or healthy phonological pro-

cessing and motion planning mechanisms. The results of the

present study may contribute to a better understanding of

language storage and further advance the development of

speech decoders.
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