Functional MRI mechanism

Jun-Cheng Weng 13 Dec 2014

Outline

- BOLD fMRI review
- Imaging method
- Imaging parameter
- Temporal resolution limitation
- Spatial resolution limitation
- Other issues

First fMRI study

• Use Gd as exogenous tracer

• Belliveau et al. *Science* 1990

First fMRI study

Non-invansive

Kwong et al. *PNAS* 1992

Ogawa et al. PNAS 1992

Physiology during neural activation

resting condition

Kida and Hyder, Magnetic Resonance Imaging Methods and Biologic Applications 2006; chapter 7.

Energy during neural activation

Neuronal firing: electrical activity

- Excitatory and inhibitory
 - Neurotransmitter release and uptake
- Action & graded potential
 - Ion flow
- Hormone

Biochemical reaction: metabolic activity

- Active transport of ion pumps
- Oxidative / non-oxidative glycolysis

Vascular response: hemodynamic activity

- Energy demand, clean up waste
- Blood flow, blood volume, blood oxygenation

Blood oxygenation & MR signal

Oxygenated Hemoglobin

6

Blood Oxygenation Level-Dependent (BOLD)

Ogawa et al. PNAS 1990

Inhalation of pure O₂

Inhalation of normal air

Field 1	Map vs. He	moglobin Sa	turation
90%	60%	30%	0%
	H3K	JON.	(C)
±19.1	±76.2	±133.4	±190.6
	-190.6	190.6	
rad = 5 μm vol = 4% θ = 90° Bo = 1.5 T D = 1.0 μm ² / ms	Δω (rad/sec)	

Bandettini and Wong.

Int'l J Imaging Systems
and Technology 1995

BOLD fMRI physiology

Imaging method - contrast type

Gardient echo vs. spin echo

- Contrast: T2* vs. T2 sensitive
- Singal: GE > SE (3-4 folds)
 - $\Delta R2*/R2* > \Delta R2/R2$
- Localization: SE > GE
 - SE: micro-vascularture (capillary)
 - GE: macro-vascularture (draining vien, capillary)
- Artifacts: GE > SE
 - susceptibility, distortion
- Acquistion time: SE > GE

Blood vessel effect

Capillary

- Diffusion distance > gradient difference
- Irreversible dephasing
- T2 shorten by diffusion
- Stronger T2 effect => SE

$$S(t) = S_0 e^{-t/T^2}$$

Large blood vessel

- Diffusion distance << gradient difference
- Reversible dephasing
- T2* shorten by average of spin
- Stronger T2* effect => GE $S(t) = \sum_{i} S_{0j} e^{-t/T2_{j}} (e^{-i\omega_{j}t_{j}})$

Kim et al., Methods 2003; 30: 28-41.

GE vs. SE BOLD fMRI

Imaging method - pulse sequence

k-trajectory

- Fast (s per slice): FLASH / FSE
 - Higher SNR, less off-resonance artifacts
- Ultra-fast (0.1s per slice): EPI
 - Highly sensitive to T2* > high BOLD signal
 - Subsecond resolution -> whole brain
 - Less physiological fluctuation
 - Less motion artifact
 - Less inflow artifact (infinite TR)
- -2D/3D

Imaging method – 2D / 3D

• 2D multi-slice vs. 3D

	3D	2D
Benefit	 Rectangular slice profile Thin slice / high resolution Can generate arbitrary view from data High SNR due to signal averaging of z axis (phase encoding) 	FasterLess motion artifact
Pitfall	Long scan timeMotion artifactAliasing artifact in z	 Imperfect slice profile (slice crosstalk) Hard to get thin slice (anisotropic resolution)

Imaging parameters

- Important parameters:
 - TR, TE, slice thickness, matrix size, field-of-view, bandwidth, slice order, slice gap, flip angle
- Tradeoff among SNR, CNR, spatial/temporal resolution
 - BOLD contrast, imaging speed, volume coverage, spatial resolution, image SNR, sensitivity to physiological activity, motion

Tradeoff among SNR, CNR, resolution

- TR: temporal resolution, inflow effect, SNR, slice number
- **TE:** =T2*
- **FA:** inflow effect
- BW: SNR, image acquisition time; EPI: T2* blur, distortion, chemical shift
- FOV: spatial resolution, SNR
- Matrix size: spatial resolution, SNR, imaging time
- Slice thickness: spatial resolution, SNR, volume coverage, partial volume
- Slice number: volume coverage, temporal resolution
- Slice order/gap: slice cross-talk

SNR and CNR

Signal-to-noise ratio (SNR)

- The most critical concern
- Voxel size, BW, matrix, TR, FA
- Optimal flip angle: Ernst angle $\alpha = cos^{-1}(e^{-TR/T1})$

Contrast-to-noise ratio (CNR)

- Voxel size: partial volume effect
- Optimal TE = T2* of gray matter (30-40 ms @ 3T)

$$\frac{\Delta S}{N} = \frac{S_0}{N} e^{-TE R2^*} (TE \Delta R2^*)$$

$$\propto \Delta R2^* / R2^* \text{ (when TE = T2*)}$$

Limitations

- Temporal
 - The shortest neural activity
- Spatial
 - The accuracy of spatial localization

BOLD fMRI: rat whisker

Yang, et al., PNAS 1996: 93: 473-478.

BOLD fMRI: laminar layers

Silva and Koretsky, PNAS 2002; 99(23): 15182-15187.

BOLD fMRI: olfactory bulb

Xu, et al., PNAS 2003; 100: 11029-11034.

Temporal resolution

Physiology

- Hemodynamic response resembles a lowpass filter
- Time constant of the response function
- Limit of stimulus duration
- Detectability of difference in latency
 - Within one ROI
 - Deconvolution of HRF
 - Linear system assumption
 - Across ROIs

Hardware

Image acquisition rate: tradeoff

Hemodynamic response function

Variability of hemodynamics

- Temporal variability
 - Noise
 - 1% baseline fluctuation
 - HRF time constant variation
 - entire: 650ms; rise: 450ms; fall: 1250ms
 - Variation over space
 - +/- 2.5s

Initial dip: orientation columns in cat visual area

Duong, et al., MRM 2000; 44:231-242

Undershoot: cat visual cortex

Zhao, et al., NeuroImage 2007; 34: 1084-1092.

What's the temporal limit of

- Maximum on-off switch rate
- Minimum detectable activation duration
- Minimum detectable difference in activation duration or onset in same region
- Minimum detectable activation interval across separate brain regions
- Maximum image acquisition rate

Current temporal limit

- Maximum on-off switch rate
 - 4 s to 8 s duration cycles
- Minimum detectable activation duration
 - 30 ms
- Minimum detectable difference in activation duration or onset in same region
 - 100 ms
- Minimum detectable activation interval across separate brain regions
 - 100 ms with normalization
- Maximum image acquisition rate
 - 64 images per sec

Spatial resolution

- Consideration
 - CNR & SNR
 - Large vessel
 - Vessels that can not resolved by high resolution image
 - Large vein has larger signal change
 - -> significant at low CNR/SNR
 - Spatial limitation of hemodynamic response
 - Point spread function

Spatial limit - CNR

Signal

$$\Delta S = \rho S_0 (e^{-TE\Delta R2^*} - 1)$$

- $-S_0$: control state signal
 - Proportional to voxel volume
- ρ : active volume
- Solution: coil, higher-field

Noise

- Random noise
- Physiological
- Head motion
- System instability

location-dependent

Spatial limit - macrovasculature

Inflow effect

- Esp for sequence using multiple excitation
- Solution
 - Longer TR (full relaxation)
 - Shorter flip angle
 - Spin echo

BOLD (T2* effect)

- Venous T2/T2* will change during activation
 - -> spin-echo also affected
- Draining/large vein effect
- Solution
 - Bipolar gradient -> suppress flowing spin in large vessels

Spatial limit - macrovasculature

- Reduce signal from large draining vein
 - Spin-echo
 - Bipolar gradient

de Zwart et al., NeuroImage 2005;24: 667-677.

Blood vessel effect

- Susceptibility difference:
 Δχ(≒0.27 ppm at 37°C)
- Deoxy-Hb concentration: 1-Y
- Vessel size: a
- Vessel orientation: θ, ψ
- Distance: r

$$\Delta\omega_{\rm in} = 2\pi \,\Delta\chi_0 \,(1 - Y) \,\omega_0 \,(\cos^2\theta - 1/3)$$

$$\Delta\omega_{\rm out} = 2\pi \,\Delta\chi_0 \,(1 - Y) \,\omega_0 \,(a/r)^2 \,(\sin^2\theta) \,(\cos2\phi)$$

• Kim et al., Methods 2003; 30: 28-41.

Biopolar gradient: human visual cortex

Song, et al., MRM 2007 57: 417-422.

Spatial limit - hemodynamic

- Electrical activity
- Metabolic activity (closer)
 - Synaptic activity may increase in inactive neuron
- Hemodynamic activity (farther)
 - CBF
 - BOLD
 - Early negative response (closer)
 - Late positive response (farther)
- Assume CMRO2 is exact
 - Largest signal is away

CBF: orientation columns in cat visual area

Duong, et al., PNAS 2001; 98: 10904-10909.

Interpretation of fMRI signal

- fMRI signal is an index of ensemble of neural activity
 - presumably monotonic relation
- Neural source of BOLD signal is not clear
 - spiking activities vs. synaptic activity
 - excitatory vs. inhibitory
- Difficult to compare fMRI signals across cortical regions and subjects
 - BOLD signal depend on vascular structure and volume

Other issues

Normal physiology condition

- Age
 - inferior vascular response for aged people (CBF decrease)
 - neonate: deoxyHb increase
- Disease
 - transient global ischemia: vascular response abolished
 - carotid stenosis: vascular response diminish
- Drug
 - alter vascular response, cardiopulmonary function,...

Meaning of negative response

- Negative response -> decreased activity?
- Inhibitory activity also increase glucose uptake

Challenge of quantification

Electrical activity

- Tiny perturbation in magnetic field: MRI phase
- Ca²⁺: manganese (Mn²⁺) enhanced MRI
- Glutamate, GABA : H¹-MRS

Metabolic activity

- Lactate : H¹-MRS
- CMRO₂: combine CBF and BOLD

Hemodynamic activity

- Oxygenation: BOLD fMRI
- CBF: Arterial Spin Labeling (ASL) MRI
- CBV: contrast-injection / VASO

CMRO₂-based fMRI

- Biophysical modeling metabolism
 - Combine CBF (or CBV) & BOLD
 - Fick's principle

$$\frac{[\text{deoxy-Hb}]_{\text{v}}}{BOLD} = \frac{1}{4} \frac{\text{CMR}_{\text{O}_2}}{\text{CBF}}$$

An et al. *NMR Biomed* 2001

$$\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \left(1 - \left(\frac{\text{CMR}_{\text{O}_2}}{\text{CMR}_{\text{O}_2}|_0} \right)^{\beta} \left(\frac{\text{CBF}}{\text{CBF}_0} \right)^{\alpha - \beta} \right).$$

Hoge et al. Magn Reson Med 1999

Davis et al. *PNAS* 1998

Manganese-enhanced MRI (MEMRI)

Auditory and whisker stimulation studies

Yu, et al., Nature neuroscience 2005; 8: 961-968.

JC Weng et al., NeuroImage 2007; 36, 1179-1188.

Future of fMRI

Technology	Methodology	Neuroscience
High Spatial Resolution	Pulse Sequence	Neurology
Cortical layers Closer to neural activity	Diffusion fMRI msMRI Inverse imagingetc	Aging Stroke Vegetative state / Coma
High Field Strength	Experimental Design	Psychiatry
Contrast / SNR Improvement	Freely-performing task fMR adaptation	Depression Autism Schizophreniaetc
Parallel Imaging	Processing Methods	Social Neuroscience
SNR / Resolution Enhancement	Multivariate Pattern Recognition (Brain Reading)	Attitude / emotion Interpersonal relations

• Bandettini et al. *Int'l J. Psychophysiol.* 2007

Take home message

- BOLD fMRI review
- Imaging method
- Imaging parameter
- Temporal resolution limitation
- Spatial resolution limitation
- Other issues

Thank you for your attention

May the force be with you