2015 MEG 教育講習課程 I: MEG 實驗設計

24 January, 2015 @ NTU

Bo-Cheng Kuo

Department of Psychology

National Taiwan University

bckuo@ntu.edu.tw

- 1. A basic plan for an M/EEG study
 - (1) Research question (novelty? Importance? Theoretical background?)
 - Mental processes vs. /or brain mechanisms?
 - Technology: Why MEG or EEG?
 - (2) Hypothesis (define mental process to examine)
 - How a given manipulation should change measurements
 - (3) Experiment (design task to manipulate that process):
 - A. Independent variables and dependent variables
 - B. Between-subject or within-subject (number of subjects)
 - C. Tasks (sufficient number of trials per each cell/condition)?
 - (a) Large effect: 30-60
 - (b) Medium effect: 150-200
 - (c) Small effect: 400-800
 - (d) Double with children or patients
 - D. Trial structure and events codes
 - (4) Data acquisition (measure M/EEG and behavioural data)
 - A. Operating status of the system and set-up
 - B. Preparation of the participant
 - C. General acquisition setup
 - (a) Eye movements and blinks
 - (b) ECG (or EKG)
 - (c) Head movements
 - (d) Anatomical MRI (if source localisation is part of planned analysis)
 - (5) Analyses, statistics and inferences (according to the design, extracting signals based on the stimulus event of interest)
 - A. Sensor-based data analysis:
 - (a) Event-related potential or magnetic field (ERP or ERMF)
 - (b) Spectral analysis: evoked/induced oscillation (power and phase)
 - (c) Spatial distribution (or topographical analysis)
 - B. Source-based data analysis:
 - (a) Source localisation for ERP/ERMFs

- (b) Source localisation for oscillations
- (c) Functional and effective connectivity analyses
- 2. Experimental design considerations
 - (1) What are the goals of experimental design?
 - A. To test specific hypotheses (hypothesis-driven)
 - B. To generate new hypotheses (data-driven)
 - (2) What should we control?
 - A. Stimulus properties
 - B. Stimulus timing
 - C. Inter-stimulus interval
 - D. Inter-trial interval (randomisation)
 - E. Whenever possible, conditions/tasks/stimuli should be varied within blocks rather than between blocks
 - F. Instructions
 - G. Responses
 - H. Noises (internal and external)
 - (a) Trial-by-trial variations
 - (b) Artifacts (eyes-closed alpha, eye blinks and movements, muscle activity, skin potentials, etc.)
 - (c) Environmental noise
 - (3) Combined techniques: MEG+fMRI, MEG+EEG

3. Other considerations

- (1) Presentation software: E-prime, NBS Presentation, Matlab, Superlab...
- (2) Participants: metal-free, large numbers.
- (3) Amplifier and filter settings.
- (4) Experimental time: about 50-60 minutes (given whole session is about 1.5-2 hours).
- (5) Runs of 4-6 minutes with a short break.
- (6) Always look at the M/EEG recording throughout the experiment.
- (7) Keep participants happy. Talk to them during break.
- (8) Do a proper analysis for the first participant's data before running anyone else. Check event codes.

4. Design strategies

- (1) Keep the experiment as simple as possible
- (2) Probably need additional experiments
- (3) Focus on specific (or large) effects (e.g. ERP/ERMF or frequency band)
- (4) Use well-studied experimental manipulations
- (5) Large trial numbers, few conditions

- (6) Avoid confounds
- (7) Decide in advance the key experimental comparisons of interest

Recommendations for reading:

- 1. MEG: An introduction to methods, Oxford University Press, 2010
- 2. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.
- 3. Gross et al., (2013). Good practice for conducting and reporting MEG research. NeuroImage, 65, 349-363.
- 4. Lopes da Silva (2013). EEG and MEG: Relevance to Neuroscience. Neuron, 80, 1112-1128.

Check this out: http://www.megcommunity.org/